当前位置:首页 > 广东省佛山市2015年中考数学试题(word版,含解析)
∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,). 点评: 本题是二次函数的综合 题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.
25.(11分)(2018?佛山)如图,在?ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H. (1)求EG:BG的值; (2)求证:AG=OG;
(3)设AG=a,GH=b,HO=c,求a:b:c的值.
考点: 相似形综合题;平行四边形的性质. 专题: 分析: 综合题. (1)根据平 行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值; (2)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=2AG,即可得到GO=AO﹣AG=AG; (3)根据相似三角形的性质可得AG=AC, AH=AC,结合AO=AC,即可得到a=AC,b=c=AC,AC,就可得到a:b:c的值. 解答: 解:(1)∵四边形ABCD是平行四边形, ∴AO=AC,AD=BC,AD∥BC, ∴△AEG∽△CBG, ∴=. ∵AE=EF=FD, ∴BC=AD=3AE, ∴GC=3AG,GB=3EG, ∴EG:BG=1:3; =
共分享92篇相关文档