当前位置:首页 > ADC - 图文
下面对我所用过的几种A/D转换器的情况做一下简单的介绍。 看图:
这是国半公司的8位逐次逼近式A/D转换器,有两个输入通道(CH0和CH1),串口输出,通过编程实现AD转换和通道选择。应该说这个电路不很优秀,有很多问题,驱动程序也是我编制的最为丑陋的程序之一。但人是有惰性的,当时任务比较急,用这个电路和程序刚好可以实现功能,完成以后达到了要求,就不愿意再改了。有兴趣的同仁如果日后选用这个片子做AD转换,可以和我联系,我可以提供我的程序和电路设计的思路。 看图:
这是MAXIM公司的双积分A/D转换器,4位半的输出精度,相当于二进位的14位精度。动态字位扫描BCD码输出,现在用的4位半的万用表中一般都用的是这个片子,上面的电路是基本与厂方推荐的电路相同,有点小小的改进,引进了SD4这个20欧姆的电阻,能够提高稳定性。 看图:
AD7714就是我前面所说的那种Σ-Δ型A/D转换器,这个器件不单是一个A/D转换器,而且是个完整的模拟检测前端电路,24位精度,SPI接口输出,包括内部可编程的放大器,采样保持器,可编程的数字滤波器等,功能非常强大,使用非常方便。现在已经有中文的应用手
册可以参考。我认为,这种模拟检测前端是AD转换器的发展方向。更有甚者将这些和数字处理器结合在一起,制成所谓的单片仪器、程序化仪器,通过编程实现功能,实在是太方便了。
V/F转换器的设计我没有搞过,这里不好乱谈,有兴趣的同仁可以查阅相关资料。 对于A/D转换器的故障判断有一下几点:
1. 电源故障。A/D转换器的模拟地和数字地是分开的,只是在终末连在一起接到系统电源上,维修过程中要是图方便将二者就近用飞线联在一起,会造成难以预测的干扰。有的A/D转换器的模拟部分和数字部分使用双电源供电,在维修中要注意二者是否都正常。
2. A/D转换器通常都采用外部基准电压输入,基准电压不正常会造成AD转换错误,维修过程也需要引起重视。
3. A/D转换器通常采用外部时钟输入完成AD转换,维修时如果电源正常,而转换器不能工作,可用示波器查看转换器的时钟信号是否正常。
4. 我一直没有示波器可用,通常是用万用表测量A/D转换器的数据线,看数据线上电电压有无跳动等来粗略判断转换器是否工作。
5. 由于CMOS器件的固有特性,A/D转换器在使用中会发生可控硅现象。现象是转换器会突然发热,时间长了就会烧毁,但如果这时切断电源,重新开机又会正常,常发生于输入信号高于电源电压的情况下。如果设计者在设计中不注意,就会使仪器在使用中发生这种情况。防范措施是加入退耦电容,在AD转换器的供电端串入一个100欧姆的限流电阻等方法来避免出现可控硅芯片烧毁芯片。
6. A/D转换器是比较娇贵的器件,工作电压不稳定、外部时钟频率不适合、温度不适合、电路板布线不合理、强干扰等都会造成AD转换不正常,影响设备的检测精度。这些问题如果发生,通常都是时有时无,很让我们这些维修工程师头痛的,没有什么好办法,只有靠耐心和细心慢慢排查,才能最终解决问题。
模数(A/D)转换器工作原理
A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。
A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。
A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。
A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。
A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把 模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。 其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。 有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单
纯A/D 转换功能,使用十分方便。
ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括:
1. 模拟输入,可以是单信道或多信道模拟输入;
2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输
入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和 数字电源接脚;
5. 数字输出,ADC 可以提供平行或串行的数字输出。
在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码 分辨率 转换误差 转换时间
绝对精准度、相对精准度
取样与保持
由于取样时间极短,取样输出为一串断续的窄脉冲。要把每个取样的窄脉冲信号数字化,是需要一定的时间。 因此在两次取样之间,应将取样的模拟信号暂时储存到下个取样脉冲到来,这个动作称之为保持。在模拟电路设计上,因此需要增加一个取样-保持电路。为了保证有正确转换,模拟电路要保留着还未转换的数据。 一个取样-保持电路可保证模拟电路中取样时,取样时间的稳定并储存,通常使用电容组件来储存电荷。根据数字信号处理的基本原理,Nyquist取样定理,若要能正确且忠实地呈现所撷取的模拟信号,必须取样频率至少高于最大频率的2倍。
例如,若是输入一个100Hz的正弦波的话,最小的取样频率至少要2倍,即是200Hz。 虽说理论值是如此,但真正在应用时,最好是接近10倍才会有不错的还原效果(因取样点越
共分享92篇相关文档