当前位置:首页 > 广东省梅州市2009年初中毕业生学业考试数学试题(含答案)
21.本题满分 8 分. (1)解:令x?0,得y?33233·················································· 1分 3,得点C(0,3). ·
令y?0,得?x?2x?3?0,解得x1??1,x2?3,
∴A(?1,························································································· 3分 0),B(3,0). ·(2)法一:证明:因为AC2?12?(3)2?4,
BC2y M2 C N M1 B x
······················ 4分 ?3?(3)?12,AB?16, ·
222222∴AB?AC?BC,············································ 5分 ∴△ABC是直角三角形.········································ 6分 法二:因为OC?3,OA?1,OB?3,
A O M3 21题图
∴OC2?OA?OB, ····································································································· 4分 ∴
OCOA?OBOC,又?AOC??COB,
∴Rt△AOC∽Rt△COB. ······················································································· 5分 ∴?ACO??OBC,?OCB??OBC?90°, ∴?ACO??OCB?90°,
∴?ACB?90°, 即△ABC是直角三角形. ·················································6 分 (3)M1(4,3),M2(?4,3),M3(2,?22.本题满分 10 分. (1)①
65(只写出一个给1分,写出2个,得1.53).
分) ······························································· 8分
D O A E G F 22题图
B ······························································· 2分
C ②法一:在矩形ABCD中,AD?BC,
?ADE??BCE,又CE?DE,
∴△ADE≌△BCE, ············································ 3分
得AE?BE,?EAB??EBA,
连OF,则OF?OA, ∴?OAF??OFA,
?OFA??EBA, ∴OF∥EB, ············································································4 分
∵FG⊥BE, ∴FG⊥OF, ∴FG是⊙O的切线 ························································································· 6分 (法二:提示:连EF,DF,证四边形DFBE是平行四边形.参照法一给分.) (2)法一:若BE能与⊙O相切, ∵AE是⊙O的直径, ∴AE⊥BE,则?DEA??BEC?90°,
又?EBC??BEC?90°, ∴?DEA??EBC,
∴Rt△ADE∽Rt△ECB,
∴
ADEC?DEBC,设DE?x,则EC?5?x,AD?BC?3,得
35?x?x3,
整理得x2?5x?9?0. ·······························································································8 分 ∵b2?4ac?25?36??11?0, ∴该方程无实数根.
∴点E不存在,BE不能与⊙O相切. ·······································10分 法二: 若BE能与⊙O相切,因AE是⊙O的直径,则AE⊥BE,?AEB?90°, 设DE?x,则EC?5?x,由勾股定理得:AE2?EB2?AB2,
即(9?x2)?[(5?x)2?9]?25, 整理得x2?5x?9?0, ··································· 8分 ∵b2?4ac?25?36??11?0, ∴该方程无实数根.
∴点E不存在,BE不能与⊙O相切. ·······································10分 (法三:本题可以通过判断以AB为直径的圆与DC是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.
(1)y?1?x·············································································································· 2分 (2)∵OP?t,∴Q点的横坐标为①当0?1212t,
12t,
t?1,即0?t?2时,QM?1?∴S△OPQ?1?1?···························································································· 3分 t?1?t?. ·
2?2?1212②当t≥2时,QM?1?t?t?1,
∴S△OPQ?1?1?t?t?1?. 2?2??1?1?t1?t?,0?t?2,??2??2?∴S?? ······················································································ 4分
?1t?1t?1?,t≥2.?????2?2当0?12t?1,即0?t?2时,S?141?1?112t?1?t???(t?1)?, 2?2?44∴当t?1时,S有最大值.······················································································ 6分
(3)由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ
是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴,则C,
O两点关于直线L对称,所以AC?OA?1,得C(1,···········································7 分 1). ·
下证?PQC?90°.连CB,则四边形OACB是正方形.
y 法一:(i)当点P在线段OB上,Q在线段AB上 (Q与B、C不重合)时,如图–1.
由对称性,得?BCQ??QOP,?QPO??QOP, ∴ ?QPB??QCB??QPB??QPO?180°,
∴ ?PQC?360°?(?QPB??QCB??PBC)?90°. ············································ 8分 (ii)当点P在线段OB的延长线上,Q在线段AB上时,如图–2,如图–3
∵?QPB??QCB,?1??2, ∴?PQC??PBC?90°. ························ 9分 (iii)当点Q与点B重合时,显然?PQC?90°. 综合(i)(ii)(iii),?PQC?90°.
∴在L1上存在点C(1,··········· 11 分 1),使得△CPQ是以Q为直角顶点的等腰直角三角形.·
L A Q O 2 1 L A Q C L1
O P B 23题图-1 x
y C L1 y L A 1 C L1 P B 23题图-2 x O B 2 Q P x 23题图-3
法二:由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴, 则C,
O两点关于直线L对称,所以AC?OA?1,得C(1,··········································7 分 1). ·
延长MQ与L1交于点N.
(i)如图–4,当点Q在线段AB上(Q与A、B不重合)时,
∵四边形OACB是正方形,
∴四边形OMNA和四边形MNCB都是矩形,△AQN和△QBM都是等腰直角三角形. ∴NC?MB?MQ,NQ?AN?OM,?QNC??QMB?90°. 又∵OM?MP, ∴MP?QN, ∴△QNC≌△QMP, ∴?MPQ??NQC, 又∵?MQP??MPQ?90°, ∴?MQP??NQC?90°.
∴?CQP?90°. ·································································································· 8分 (ii)当点Q与点B重合时,显然?PQC?90°. ········································· 9分 (iii)Q在线段AB的延长线上时,如图–5, ∵?BCQ??MPQ,∠1=∠2 ∴?CQP??CBM?90°
综合(i)(ii)(iii),?PQC?90°.
∴在L1上存在点C(1,······ 11分 1),使得△CPQ是以Q为直角顶点的等腰直角三角形. ·
y L A Q O O M P B 23题图-4
x B N C L1
y L A 1 y L A Q C L1
O P B 23题图-1 x C L1 2 Q P x 23题图-5
法三:由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴, 则C,O两点关于直线L对称,所以AC?OA?1,得C(1,····················· 9分 1). ·
连PC,∵PB?|1?t|,OM?12t,MQ?1?t2,
∴PC2?PB2?BC2?(1?t)2?1?t2?2t?2,
t?t?t??2?MQ?????1????t?1.
2?2?2??222OQ?OP?CQ?OM2222∴PC2?OP2?QC2,∴?CQP?90°.··································································10分 ∴在L1上存在点C(1,·········· 11分 1),使得△CPQ是以Q为直角顶点的等腰直角三角形. ·
共分享92篇相关文档