云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整word版)九年级数学解直角三角形专题

(完整word版)九年级数学解直角三角形专题

  • 62 次阅读
  • 3 次下载
  • 2026/1/10 6:15:47

做教育 做良心 中小学1对1课外辅导

《解直角三角形》专题

一、复习目标:

1. 掌握直角三角形中锐角三角函数的定义。

2. 熟记30°,45°,60°角的各三角函数值,会计算含特殊角三角函数的代数式的值。 3. 能熟练运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。 4. 会用解直角三角形的有关知识解简单的实际问题。 二、复习重点:

先构造直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实际问题。 三、复习难点:

把实际问题转化为解直角三角形的数学问题。 四、复习过程: B (一)知识回顾 斜边 ∠A的对边

1.三角函数定义:

我们规定

A C

∠A的邻边 ①

?A的对边?A的对边叫∠A的正弦.记作sinA?

斜边斜边?A的邻边?A的邻边叫∠A的余弦.记作cosA?

斜边斜边?A的对边?A的对边叫∠A的正切.记作tanA=

?A的邻边?A的邻边②

2.特殊角的三角函数值

角度 函数值 30° 45° 60° sin? 1 23 23 32 23 2cos? 2 21 1 23 tanα 3.互为余角的函数关系式:

90°-∠A与∠A是互为余角.

有sin(90?A)?cosA cos(90?A)?sinA 通过这两个关系式,可以将正,余弦互化.

????如sin40?cos50 cos3812??sin5148?

??专题练习

1

做教育 做良心 中小学1对1课外辅导

1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。 (1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m)。

备用数据:3?1.7,2?1.4

2.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.

3.如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果精确到0.1米)

2

做教育 做良心 中小学1对1课外辅导

4.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)

5.为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)

6.如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:

≈1.414,

≈1.732)

3

做教育 做良心 中小学1对1课外辅导

7.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

8.张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)

9.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上. (1)求CD两点的距离;

(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值. (参考数据:sin53°≈,cos53°≈,tan53°≈)

4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

做教育 做良心 中小学1对1课外辅导 《解直角三角形》专题 一、复习目标: 1. 掌握直角三角形中锐角三角函数的定义。 2. 熟记30°,45°,60°角的各三角函数值,会计算含特殊角三角函数的代数式的值。 3. 能熟练运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。 4. 会用解直角三角形的有关知识解简单的实际问题。 二、复习重点: 先构造直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实际问题。 三、复习难点: 把实际问题转化为解直角三角形的数学问题。 四、复习过程: B (一)知识回顾 斜边 ∠A的对边 1.三角函数定义: 我们规定 A C ∠A的邻边 ①?

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com