云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 生 活 垃 圾 热 解 技 术

生 活 垃 圾 热 解 技 术

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 17:22:07

垃圾热值的大约35%用于助燃空气的加热和设施所需电力的供应,提供给余热锅炉的热量达57%,即相当于垃圾热值的大约37%作为蒸汽得到回收。

图 3 Torrax系统工艺流程图

(4)Occidental系统

采用不锈钢制筒式反应器,炭黑加热到760℃返回热解反应器供热,80℃急冷得到燃料油,热解油平均热值24401kJ/kg。

图 4 Occidental系统工艺流程图

国外技术进展

生物质能转换技术可高效地利用生物质能源, 生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。 目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。热解技术是国外研究生物质能转换的热点之一。

气化技术 原料:主要是城市居民生活垃圾、工业固体废弃物、城市绿化垃圾、原木生产及木材加工的残余物、薪柴、农业副产品等,包括板皮、木屑、枝杈、秸秆、稻壳、玉米芯等,原料来源广泛,价廉易取。它们挥发分高,灰分少,易裂解,是热化学转换的良好材料。按照具体转换工艺的不同,在添入反应炉之前,根据需要应进行适当的干燥和机械加工处理。

特点:IEA煤研究机构对生物质固体废弃物与煤的混合利用进行了研究,经过对各种废弃物的实验发现,与混合液化和混合热解相比,混合气化更有吸引力。因为气化方式燃料适应性广,从挥发分含量比较高的生物质和大多数废弃物到反应性差的煤,能够同时产生可燃气体。与传统的燃烧工艺相比,气化技术既有较高的效率同时具有很好的环保性能。

国外已经建成的大型IGCC电厂一般采用气流床煤气化炉,这一多联产技术将通过生产合成气的同时输出电力、热能和其他产品,使得过程更容易优化,同时获得富集的CO2易于减排,适合开展混合气化工业化应用的探索性试验。

荷兰:关于生物质的单独气流床气化方面的研究,荷兰能源中心(ECN)试图开发生物质气流床气化技术,从生物质灰的熔融特性、生物质给料装置、加压方法以及气化路线选择方面进行了一些研究,发现最大的困难在加料系统,尤其是干粉气化方式并不能适应生物质等有机废弃物。

德国:科林公司(CHOREN)提出整套生物质热解与气流床气化相结合的路线分为三个阶段,第一步热解得到气体、焦油和固体产物,第二步进一步分解液体焦油,第三步在气流床气化生物质炭。而气流床气化炉在处理化石燃料方面技术成熟,如果在煤气化过程添加一定比例的生物质,则可以灵活调整混合气化的燃料比例,使得气化炉运行成本更低。

瑞典:世界上第一个生物质气化IGCC(Integrated gasification combined cycle)电站位于瑞典Varnamo,采用正压循环流化床气化炉(950-1000℃ ,18bar)、高温陶瓷管过滤器、燃气蒸汽联合循环发电系统。燃料为木材,输入热量18MW,供电6MW,供热9MW。净发电效率32%,总效率83%。该厂1991-1993年建设,1993-1999年运行,气化炉运行8500小时,全厂运行3600小时。因运行成本太高,2000年停运封存。

2003年 Vaxjo Varnamo Biomass Gasification Center成立 ,将该电站作为大型的研究设施,目的为:1)开发利用垃圾衍生燃料RDF,包括废弃轮胎等;2)生产清洁的富氢合成气,采用催化重整方法;3)改造成生产汽车替代燃料,二甲醚/甲醇/生物柴油。

美国: Polk Power Station在DOE资助下,于2001年在其水煤浆气化炉添加桉树进行混合气化试验。图5所示为混合气化系统组成原理图,桉树被磨制成较细的粉末后与煤混合制取水煤浆,在气化炉混合气化。

试验中生物质添加量达1.2%,混合气化过程没有任何技术障碍。但是生物质收集和粉碎磨粉成本非常高,由于磨粉过程大尺寸木材片卡住煤浆泵造成给料困难。因此,木材类生物质直接制粉用于混合气化的燃料制备成本太高。

图 5 混合气化系统组成原理图

西班牙:Elcogas IGCC电厂(Puertollano)采用的PRENFLO(pressurised entrained flow gasifier)加压气流床气化炉,是一种加压、干式给料工艺。气化炉结构独特,气化炉本体与合成气冷却器结合。燃料、O2和蒸汽一起从装在气化炉下部的燃烧器给入。在气化炉出口,合成气借助再循环的洁净合成气淬冷,熔渣在水槽内淬冷。气化原料为高灰煤和高硫石油焦,采用85%纯度的氧气气化。进行了小麦秸秆与煤焦的混合气化,添加比例10%(基于总能量),结果表明添加生物质后,合成气中CO2和H2O的浓度增加而CO减少,适当调整氧气和蒸汽流量以达到较高的冷煤气效率。但是生物质含水量必须控制在15%以下,以免影响制粉过程。

热解炭化技术 美国:是最早开展城市生活垃圾热解处理的国家,早在1929年就对垃圾进行了高温热解的实验研究。1967年Kisser和Friedmdii进行了均质有机废物高温热解的试验,随后进一步进行了对非均质废物(如城市生活垃圾)的高温热解的研究,结果显示垃圾热解产生的气体可以用作锅炉燃料。随后Hoffman和Fitz在实验室中使用一种干馏系统分解典型的城市生活垃圾,研究结果表明,高温分解产物包括气体、焦油及各种形式的固体残渣。同时还证明了高温分解一旦开始,它就能自动维持下去,因为反应产物可以作为加热热解系统的能源。

欧洲:建立了一些以垃圾中的纤维素物质(如木材、庭院废物、农业废物等)和合成高分子物质(如废塑料、废橡胶等)热解实验性装罝,其目的是将热解作为焚烧处理的辅助性手段。在欧洲,主要根据处理对象的祌类、反应器的类型和运行条件对热解处理系统进行分类,研究不同条件下产物的性质和组成,尤其重视各祌系统在运行上的特点和问题。

加拿大:热解技术研究主要围绕农业废弃物等生物质,特别是木材的气化进行的。加拿大政府于二十世纪70年代末期,开始了以利用大量存在的废弃生物质资源为目的的研发计划,相继开展了利用回转窑、流化床对生物质进行气化和利用催化剂对木材高温液化的研究。

日本:对城市生活垃圾热解技术的研究是从1973年开始的,主要是为配合热解气化熔融技术而进行的,且新日铁的城市生活垃圾热解熔融技术在世界上最早实现工业化。

1)实验室研究进展

经过科学家的不断摸索研究,热解工艺理论研究已初具规模。热解过程包含四个连续的热反应阶段。第一阶段为吸热脱水阶段,温度较低,析出结合水,聚合物开始裂解。第二阶段为挥发分大量析出阶段,一氧化碳出现最大生成速率,同时生成少量液体产品。前两阶段均为吸热反应。第三阶段为二次裂解阶段,是液体产物的主要生成阶段,气体产物可燃成分大量增加,释放大量的热。第四阶段固体产物焦结构固化、压缩,挥发物质减少,固定碳含量增加,同时生成氢和CO等。该阶段也是放热反应。已有研究显示,升温速率对液体产物影响不大,但对气体产物和固体产物的分布有较大影响,建议生物质热解的温度在350℃~600℃之间,固体产物焦炭的生产率在15~35%之间,流化床的应用较为广泛。

美国、欧洲:首先针对生物质的三种主要成分木质素、半纤维素、纤维素开展了热解机理研究(E. Sj?str?m, 1993; F. Shafizadesh, 1985)。在此基础上,展开了广泛的实验室研究,包括不同生物质原料(如木材(Joseph, 1996; Lim, 1993)、椰子壳(Iniesta, 2001)、塑料(Uzumkesici, 1999)、甘蔗渣(Strezov, 2007; Katyal, 2003)等)的热解过程分析、产物生成速率、产物分布等,研究了热解温度、蒸气停留时间、升温速率等不同参数对热解过程的影响,对产物的特性进行了评价,发展了流化床、烧蚀反应器、循环式流化床、旋转炉等不同类型的反应器。伴随着人们对城市生活垃圾处理处置的重视,以及生活垃圾传统处理工艺暴露出的问题,人们逐渐将热解技术应用于生活垃圾的处理。针对MSW炭化温度这一核心参数,美国学者认为(Bridgwater and Peacocke, 1999; Bridgwater, 2012),控制炭化温度在400℃左右,蒸气停留时间在数天时,有利于固体产物的生成,其液体、固体和气体产物的比例约为30%、35%和35%。

印度:研究集中于腰果壳(Das, 2003; Das, 2004)、甘蔗渣(Das, 2004; Parihar, 2007)、花生榨油残渣

(Agrawalla, 2011)等原料。印度理工学院(Das,2003)研究了400~600℃下热解的产物生产率,发现随着

温度的升高,焦炭产率由400℃的23%,下降至600℃的19%。Matsuzawa研究了在435℃、445℃和455℃下城市生活垃圾热解后的固体产物的理化特性,认为可用作热解反应过程燃料,满足热解过程对能量的需求。

表2列出了大多数目前已知的最近和现有的热解工艺的研究和运行实例。

表 1 国外实验室热解反应器应用

反应器类型 Fluid bed Transported bed & CFB

生产商 Agritherm, Canada Biomass Engineering Ltd, UK Dynamotive, Canada RTI, Canada Ensyn, Canada Metso/UPM, Finland 运行或研究机构 Adelaide U, Australia Aston U., UK Cirad, France Curtin U, Australia ECN, NL Iowa State U., USA NREL, USA PNNL, USA TNO, Netherlands USDA, ARS, ERRC, USA U. Seoul, Korea CPERI, Greece U. Birmingham, UK U. Nottingham, UK 处理量/kg/h 1 5 2 2 1 6 10 1 10 1 N/A 1 N/A N/A

搜索更多关于: 生 活 垃 圾 热 解 技 术 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

垃圾热值的大约35%用于助燃空气的加热和设施所需电力的供应,提供给余热锅炉的热量达57%,即相当于垃圾热值的大约37%作为蒸汽得到回收。 图 3 Torrax系统工艺流程图 (4)Occidental系统 采用不锈钢制筒式反应器,炭黑加热到760℃返回热解反应器供热,80℃急冷得到燃料油,热解油平均热值24401kJ/kg。 图 4 Occidental系统工艺流程图 国外技术进展 生物质能转换技术可高效地利用生物质能源, 生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。 目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com