云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 信息与计算科学毕业论文最大流问题及应用

信息与计算科学毕业论文最大流问题及应用

  • 62 次阅读
  • 3 次下载
  • 2025/5/7 7:06:46

山东科技大学本科毕业设计(论文)

为了充分发挥该铁路线的货运能力,需要排定一张最优的货车运行时刻表,即要求每天发出最多的货运列车且不干扰已排定的客运列车。 4.1.2 问题分析

求解这个问题较为复杂,但可将其转化为网络最大流问题。 (1)设A、B两市及其间的车站共P个。每个车站有nk条岔道(k=1,2,3…P),可停放nk列列车。从第k站到第k+1站的行车时间货车为tk个小时,客车为tk' 个小时。

设?k为火车到达第k站并从第k站开出的时刻 设?k为客车到达第k站并从第k站开出的时刻 设?k?1为货车到达第k+1站并从第k+1站开出的时刻 设?k?1为客车到达第k+1站并从第k+1站开出的时刻 于是显然有?k?1??k?tk ?k'?1??k'?tk'

(2)若??k,?k?1?与?',?'k?1有公共部分,则称??k,?k?1?与?',?'k?1是相交的,否则成为不相交的。显然有当只??k,?k?1?与?',?'k?1相交情况下客车才有可能(并非必然)在第k站与地k+1站间追上货车。

''(3)在??k,?k?1?与?',?'k?1相交情况下,?k,?k?1,?k,?k?1间的相交关系

''????????可由图4.1.1所示:

20

山东科技大学本科毕业设计(论文)

图4.11

情况Ⅵ为途中货车追上了客车故不符合题意。情况Ⅰ与情况Ⅱ中在第k站与第k+1站间不发生在途中追上货车。而在情况Ⅲ中必发生在第k站与第k+1

21

山东科技大学本科毕业设计(论文)

站间客车在途中追上货车。 于是有下列结论:

若??'k,?'k?1?在??k,?k?1?内,即?'k??k及?'k?1??k?1,则在第k站与第k+1站必发生客车追上货车情况。否则在第k站与第k+1站之间不发生客车追上货车情况。 (4)绘制网络图

用(k,?k)表示第k站处于时刻?k的状态,如在?k=2.3在(k,2.6),(k,6.6)状态开出的货车不会再途中被客车追上,则在图中表现为(k,2.6)及(k,6.6)两节点为起点的两条水平方向的直线弧,而在(k,4.6)状态下开出的货车会在途中被客车追上,则不能从该点引出水平方向的直线弧(图4.1.2),垂直方向的直线弧并联着同一车站的相邻状态。

22

山东科技大学本科毕业设计(论文)

图4.1.2

上图中各弧旁的数字为容量,因铁路线是单向单轨的,故水平方向的弧容量为1,垂直方向的弧的容量为各站的岔道数量,在列出全部状态的网络图中求最大流,此最大流即为允许开出的最多货运列车数。 4.1.3 问题求解

以货运列车的运行时间为基础绘制网络图。

(1)令?A,?B,?C,?D为火车从某站开出或到达某站的时刻。依题意,若不受客车干扰则:

23

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

山东科技大学本科毕业设计(论文) 为了充分发挥该铁路线的货运能力,需要排定一张最优的货车运行时刻表,即要求每天发出最多的货运列车且不干扰已排定的客运列车。 4.1.2 问题分析 求解这个问题较为复杂,但可将其转化为网络最大流问题。 (1)设A、B两市及其间的车站共P个。每个车站有nk条岔道(k=1,2,3…P),可停放nk列列车。从第k站到第k+1站的行车时间货车为tk个小时,客车为tk' 个小时。 设?k为火车到达第k站并从第k站开出的时刻 设?k为客车到达第k站并从第k站开出的时刻 设?k?1为货车到达第k+1站并从第k+1站开出的时刻 设?k?1为客车到达第k+1站并从第k+1站开出的时刻 于是显然有?k?1??k?tk ?k'?1??k'?tk' (2)若??k,?k?1?与?',?'k?1有公共部分,则称

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com