当前位置:首页 > 3、2018海淀初三二模数学试题及答案
运动员 甲 乙 平均数 8.5 8.5 中位数 9 众数
(2) 根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.
25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:
收费项目 3公里以内收费 基本单价 …… 收费标准 13元 2.3元/公里 …… 备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.
下面是小明的探究过程,请补充完整:
记一次运营出租车行驶的里程数为x(单位:公里),相应的实付车费为y(单位:元). (1)下表是y随x的变化情况
行驶里程数x 0 0<x<3.5 3.5≤x<4 4≤x<4.5 4.5≤x<5 5≤x<5.5 … 实付车费y 0 13 14 15 … (2)在平面直角坐标系xOy中,画出当0?x?5.5时y随x变化的函数图象;
y2421181512963O123456x
(3)一次运营行驶x公里(x?0)的平均单价记为w(单位:元/公里),其中w?y. x①当x?3,3.4和3.5时,平均单价依次为w1,w2,w3,则w1,w2,w3的大小关系是____________;(用“<”连接) ②若一次运营行驶x公里的平均单价w不大于行驶任意s(s?x)公里的平均单价ws,则称这次行驶的里程数为幸运里程数.请在上图中x轴上表示出3:4(不包括端点)之间的幸运里程数x的取值范围.
y2421181512963O123456x
26.在平面直角坐标系xOy中,已知点A(?3,1),B(?1,1),C(m,n),其中n?1,以点A,B,C为顶点的平行四边形有三个,记第四个顶点分别为D1,D2,D3,如图所示.
(1)若m??1,n?3,则点D1,D2,D3的坐标分别是( ),( ),( );
(2)是否存在点C,使得点A,B,D1,D2,D3在同一条抛物线上?若存在,求出点C的坐标;若不存在,说明理由.
ABD1CyD2
D3Ox
27.如图,在等边△ABC中, D,E分别是边AC,BC上的点,且CD?CE ,?DBC?30? ,点C与点F关于BD对称,连接AF,FE,FE交BD于G.
A(1)连接DE,DF,则DE,DF之间的数量关系是 ;
F(2)若?DBC??,求?FEC的大小; (用?的式子表示)
GD(2)用等式表示线段BG,GF和FA之间的数量关系,并证明.
BEC
28.对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点(a,b1),(a?1,b2),
b2?b1?k都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例
如,函数y??x?2,当x取值a和a?1时,函数值分别为b1??a?2,b2??a?1,故b2?b1??1?k,因此函数y??x?2是限减函数,它的限减系数为?1.
(1)写出函数y?2x?1的限减系数;
(2)m?0,已知y?1(?1?x?m,x?0)是限减函数,且限减系数k?4,求m的取值范围. x
共分享92篇相关文档