当前位置:首页 > 毕业设计-室分设计 - 图文
东莞大岭山天和百货分布系统与网络优化设计
络,这其中包括185个商用网络和63个测试网络。截止到2013年10月,全球21个国家中已经有35个LTE网络投入到商用中,这其中就有2个TD-LTE网络。截止到2013年6月,全球LTE用户已经达到了 203万。截止到2013年10月,全球LTE终端已经达到197款。由此可见,世界范围内,LTE已经成为了下一代的移动通信网络主要技术。
在国内,中国移动也全面推进TD-LTE的发展。首先中国移动有这种基础。一为基础建设,中国移动为推动TD-SCDMA,具有了一定的市场规模,为TD-LTE的发展奠定了基础;二为Road Map的制定,2008年,中国移动启动TD-LTE设备规范的制定,推动产业链的快速发展,同时,TD-LTE世博会、预商用版本和商用版本设备规范的完成也助推了商用设备的全面出炉;三为与国际组织的合作,中国移动积极推动与3GPP、NGMN 、LSTI等国际组织之间的交流与合作,扩大TD-LTE在国际上的影响力;四为测试工作的开展,中国移动逐步进行POC、单系统与规模试验外场测试,为商用及商业阶段做准备。
2. TD-LTE基本原理
2.1 TD-LTE的关键技术
新一代宽带无线移动通信系统的出现将OFDM、MIMO技术作为重要支撑,能够通过移动通信空中接口技术对数据信息进行分组优化,之后再进行数据传输。本章主要对基础技术特点与概念进行简单介绍。
2.1.1 OFDM 技术
为了去除频率选择性衰落,需要进行窄带传输,而OFDM就是一种能够消除不同信号波形之间干扰的窄带传输,但是简单的OFDM由于需要频率之间的保护带宽使得系统的频谱效率不高。而重叠并且正交的OFDM既解决了频谱效率不高的问题,同时也解决了频率选择性干扰问题。如图2-1可知,正交频分复用(OFDM) 技术可以大大节省频率资源。在LTE系统中,其下行链路釆用的是
第3页 共50页
东莞大岭山天和百货分布系统与网络优化设计
正交频分复用多址(Orthogonal Frequency Division Multiple Access, OFDM A)技术,上行链路采用的单载波频分多址(Single Carrier - Frequency Division Multiplexing Access, SC-FDMA)技术。
图2-1传统频分复用和正交频分复用(OFDM)的区别
OFDM传输的基本概念是:将高速数据分割成多个低速数据,低速数据通过一系列的子载波并行传输,每个子载波只占整个传输的一部分,总吞吐量是每一个单独的子载波的速率之和,功率能力被分配给所有使用的子载波上。通过快速傅里叶变换(Fast Fourier Transform, FFT)可产生正交的子载波,子载波的数量由傅里叶变换的大小决定。使用OFDM技术,虽然充分提高了频谱利用率,节省了带宽资源,但也带来了新的挑战。
首先是带来了由多径传播引起的符号间干扰(Inter Symbol Interference, ISI)。由于信号经过复杂的无线空间传播环境时,传播路径不止一条,且各条传播路径传播信号所需时间不一样,这就导致同一信号接收端多次受到,从而造成符号间的干扰。解决符号间干扰的办法是引入了循环前缀(Cyclic Prefix, CP)的概念,只要循环前缀的时间长于信道时延扩展,就可以完全消除ISI。引入的CP概念在解决ISI的同时,还解决了 OFDM中另一个重要问题,即子载波间干扰( Inter Carrier Interference ,ICI)。截取OFDM信号后面的部分信号作为CP内容放在最前面,使得在接收处理OFDM信号时,实现了一个具有循环卷积特性的信号,当CP长度大于多径造成的时延时,就可以保证各个子载波间相互正交。
第4页 共50页
东莞大岭山天和百货分布系统与网络优化设计
OFDM技术具有如下特点:
● LTE系统引入了循环前缀的概念,截取OFDM信号后面的部分信号作为CP内容放在最前面,使得在接收处理OFDM信号时,实现了一个具有循环卷积特性的信号,循环前缀克服了码间串扰,使得各个信号之间保持正交;
● OFDM技术将串行传输数据分成多个以进行并行传输,这种方法解决了高速数据传输时受到的频率选择性衰落;
● OFDM技术在有限的带宽条件下,最大化了传输速率,与此同时,还避免了不同子信道之间的干扰。
2.1.2 MIMO 技术
MIMO系统是在无线通信智能天线技术的基础上发展起来的,其主要的特点就是在系统的两端采用多天线发射和接收,以解决大容量高速率传输与宝贵的频率资源间的矛盾。对于一般的通信系统,多径效应引起的衰落是非常不利的,但是在MIMO系统中,却可以利用多径效应来进行数据传输。
MMO技术包括空间复用、传输分集和波束赋形,它们的主要特点如下: 空间复用传输通道是一种弱相关性的空间通道,多个独立的通道传递不同的数据流,从而提高数据的传输速率。一般情况下,空间复用要求接受端的天线数目大于或者等于发射端天线数目。传输分集的基本原理是利用多个副本传输相同的信息,这多个副本在空间信道中通过多个不同的信道传输,由于每个空间信道的传输特性不同,因此,经过这些不同的信道传输之副本信息的衰落也将不一样。在接收端,接收机通过合并处理接收到的这些不同衰落的副本信息来还原原始信号。这就提高了信号传输的可靠性,传输分集最重要的就是空间信道的不相关性。
波束赋形又叫空域滤波,它是一种利用天线阵列产生定向发射信号的信号传输技术。它利用了空间信道的强相关性,通过调整天线阵列中每个阵元的加权系数产生具有方向性的波束,从而提高波束方向的信噪比,以此提高系统容量和覆盖范围。
第5页 共50页
东莞大岭山天和百货分布系统与网络优化设计
经过研究表明MIMO系统的信道容量随着天线的数量的增加而线性的增加,也就是说MIMO技术可以在不增加带宽和发射功率的情况下,成倍的提高系统的容量,频谱利用率也成倍地提高了。
2.1.3 多址传输方式
多址技术又称为“多址连接”技术,是指把处于不同地点的多个用户接入一个公共传输媒质,实现各用户之间通信的技术。多址技术多用于无线通信并且是无线通信技术的基础。对于多址技术,TD-LTE规定了上行采用SC-FDMA即单载波频分多址技术,下行采用的是OFDMA即正交频分多址技术。根据LTE系统上下行传输方式的特点,无论是下行OFDMA,还是上行SC-FDMA都保证了使用不同频谱资源用户的正交性。
2.2TD-LTE的优势与特点
2.2.1 TD-LTE的优势
1、频谱利用率高 。 2、对功控要求低 。
3、采用智能天线和联合测试引入了所谓的空中分级,但效果如何,还待验证。
4、避免了呼吸效应 TD不同业务对覆盖区域的大小影响较小,易于网络规划。
2.2.2 TD-LTE的特点
TD-SCDMA网络中所包含的业务信道具备较强专业性,在链路预算的基础上对每项业务最大损耗进行精准计算并获得覆盖范围。在系统演进到LTE的全过程类似于HSPA,能够实现业务信道共享,所以若想要对小区覆盖范围进一步明确,首要工作就是对小区边缘用户最低保障速率、小区边缘频谱效率要求等进
第6页 共50页
共分享92篇相关文档