当前位置:首页 > 17年新湘教版八年级下册数学教案 - 图文
数 学 教 案
—八 年 级 下 册
姓 名:班 次:
2017
年 2月
第1章 直角三角形
§1.1直角三角形的性质和判定(Ⅰ)
(第1课时)
教学目标:
1、 掌握“直角三角形的两个锐角互余”定理。
2、 掌握“有两个锐角互余的三角形是直角三角形”定理。
3、 掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。 4、巩固利用添辅助线证明有关几何问题的方法。 教学重点:直角三角形斜边上的中线性质定理的应用。
难点:直角三角形斜边上的中线性质定理的证明思想方法。 教学方法:观察、比较、合作、交流、探索. 教学过程:
一、复习提问:(1)什么叫直角三角形?
(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,
还具备哪些性质?
二、新授
(一)直角三角形性质定理1 请学生看图形:
1、提问:∠A与∠B有何关系?为什么?
2、归纳小结:定理1:直角三角形的两个锐角互余。 3、巩固练习: 练习1
(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数
(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有 (2)与∠A相等的角有 。(3)与∠B相等的角有 。 (二)直角三角形的判定定理1
1、提问:“ 在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”
2、利用三角形内角和定理进行推理
3、归纳:有两个角互余的三角形是直角三角形
练习3:若 ∠A= 600 ,∠B =300,那么△ABC是 三角形。 (三)直角三角形性质定理2
1、实验操作: 要学生拿出事先准备好的直角三角形的纸片 (l)量一量斜边AB的长度
(2)找到斜边的中点,用字母D表示 (3)画出斜边上的中线 (4)量一量斜边上的中线的长度
让学生猜想斜边上的中线与斜边长度之间有何关系? 归纳命题:直角三角形斜边上的中线等于斜边的一半。 证明命题:(教师引导,学生讨论,共同完成证明过程)
推理证明思路: ①作点D1 ②证明所作点D1 具有的性质 ③ 证明点D1 与点D重合
应用定理:
例1如图1-5,已知CD是?ABC的AB边上的中线,且CD=求证:?ABC是直角三角形 学生练习,指名板书 集体讲解,总结得出:
一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。 三、巩固训练:
练习4: 在△ABC中, ∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习P4 2 四、小结:
通过今天的学习有哪些收获? 这节课主要讲了直角三角形的那两条性质定理和一条判定定理?
1、 2、
BDCA1AB。 2EF
3、
五、作业:P7 习题A组 1、2 六、课后反思:
§1.1直角三角形的性质和判定(Ⅰ)
(第2课时)
教学目标
1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”;
2、掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”;
3、能利用直角三角形的性质解决一些实际问题。 重点、难点
重点:直角三角形的性质,难点:直角三角形性质的应用 教学过程
一、 创设情境,导入新课 1 直角三角形有哪些性质?
(1)两锐角互余;(2)斜边上的中线等于斜边的一半 2 按要求画图:
(1)画∠MON,使∠MON=30°,
(2)在OM上任意取点P,过P作ON的垂线PK,垂足为K,量一量PO,PK的长度,PO,PK有什么关系?
(3) 在OM上再取点Q,R,分别过Q,R作ON的垂线QD,RE,垂足分别为D,E,量一量QD,OQ,它们有什么关系?量一量RE,OR,它们有什么关系? 由此你发现了什么规律?
直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
KOMPCABD
共分享92篇相关文档