当前位置:首页 > 传感器毕业论文
实验证明,纯净水几乎是不导电的,但自然界存在的以及人们日常使用的水都会含有一定的等离子,它们的存在使水导电。本控制装置就是利用水的导电性来完成的。
我们把储水箱大致分为四个等份,水位由潜入太阳能热水器的储水箱不同深度的水位电极和潜入储水箱底部的公共电极(导线)进行检测;由单片机依次使各水位电极呈现高电平,由公共电极所接的三极管进行典韦转换,水位到达的电极,转换电位为低(0);水位没有到达的电极,转换电位为高(1);每检测一位便得到一位数据,5个电极检测一遍以后便得到了5个串行数据,然后把这5个数据转换化为字节一路送发光二极管,在这里我们可以用发光二极管亮的盏数来显示水位的高低。(若没有发光二极管亮则表示箱内没有水或者只有少量的水,若有一个发光二极管灯亮则表示箱内有四分之一箱的水,以此类推,若有四个发光二极管亮,则表示水箱水是满的。)
当水位未达到a时,即h 当a h 其中,环形振荡器产生的方波周期T(或f)可通过单片机P87LPC744BN的两个定时/计数器(T0、T1)来确定,T1用来计数,T0用来定时。 3.2驱动电路设计 在单片机控制系统中,需要用开关量去控制和驱动一些执行元件,如发光二极管、继电器、电磁阀、晶闸管等。但AT89C51单片机驱动能力有限,而且高电平比低电平驱动低。一般情况下,需要加驱动接口电路,且用低电平驱动。 如图所示: 13 图5 驱动电路图 3.3 键盘电路和显示电路的设计 3.3.1 键盘电路的设计 P1.0-P1.7口作为按键的信号输入端,键按下,就执行该键的功能。其电路如图所示。(为了编程简单、方面,采用独立式键盘电路) 当按键按下后,电路与地接通时,I/U口与地面相连为低电平。 按键没有按下时,电路不与地面接通时,I/U口与电压高端相连为高电平。 本设计中采用了共阴极接法,对于显示水温水位的程序作如下说明: ① 在动态扫描过程中,调用延时子程序Dell,其延时时间为1ms,这是为了使扫描到哪位显示器稳定的点亮一段时间,犹如扫描过程中每一位显示器上都有一段驻留时间,以保证其显示亮度。 ② 本设计接口电路是软件为主的接口电路,对显示数据以查表方法得到其字形代码,为此在程序中有字形代码Table,从0开始依次写入十六进制数的字形代码。为了进行查表操作,使用查表指令MOVC A,@+DPTR,由DPTR提供16位基址,由A提供变址数据送A后,在由A送P0.1-P0.6输出给显示器。 图6 键盘电路图 14 3.3.2 显示电路的设计 本设计采用共阳型数码管,8个LED灯如图中接法,灯的负极依次接到数码管的a-f段,采用动态扫描电路,并把显示程序作为主程序。数码管的段用P0口控制,P2.0口、P2.3口作为数码管的位控制,P2.4作为指示灯的控制。 系统输入信号有:6个液位信号、一个温度信号、4个触摸键;输出信号有:4位LED数码管分时显示当前温度和液位,3个喂输出控制继电器分别控制上水位磁阀、加热泵、增压泵,1个位输出控制蜂鸣器作为水位报警信号和其他异常情况报警,2个位输出指示上水、加热状态。用户设定项目有水位上限、热水温度、上水定时、加热定时。设定参数用EEPROM保存,停电后参数无需重新设定。系统具有故障自检功能,电磁阀、加压泵在停水时会自动切断,水位传感器有故障时禁止上水,以免上水时溢出。 温度传感器采用负温度型通用热敏电阻,整个控制器的硬件及对资源的要求降到最低。通过软件进行数值计算和逻辑运算,以实现要求的控制功能。 图7 时钟显示图 本系统中,有四个功能按键:定时加水、恒温控制、手动加水和手动加热;三个七段码显示与四个LED灯指示。 (1) 按下定时加水按钮时,定时LED变亮,并以当前时间为定时时标,每24小时自动加水至设定水量;若长按此钮超过5秒,定时LED灭,并听到“嘟”一声进行水量设定,此后每按一下钮,水量显示加一档,1~4档循环显示,不按此钮超过5秒,再次听到“嘟”一声,水量设定完毕。系统的定时功能主要通过软件完成。 (2)按下恒温控制钮,恒温LED变亮,表示进行恒温控制,再按一下LED 15 灭,取消恒温控制。与水量设定类似,长按后,进行温度设定。 (3)按下手动加热钮时,加热LED变亮,加热至65℃,如水量少于1档,则先加水到1档,再按一次取消加热。 (4)按下手动加水钮时,加水至设定水量值,长按可设定水量。手动加水过程中,再次按下取消加水。正常情况下,两个七段码显示当前水温,另一个显示当前水位。 显示电路如图所示,温度采用二位七段码显示,显示范围0℃~99℃。水量采用一位七段显示,显示1、2、3、4,四档水位。对温度和水量进行循环扫描显示。四个LED用于当前按键功能设定。 设置按键两个,一个十位按键,一个个位按键。 图8 LED显示电路图 16
共分享92篇相关文档