当前位置:首页 > 用放缩法处理数列和不等问题(教师版)
用放缩法处理数列和不等问题(教师版)
一.先求和后放缩(主要是先裂项求和,再放缩处理)
例1.正数数列?an?的前n项的和Sn,满足2Sn?an?1,试求: (1)数列?an?的通项公式; (2)设bn?11,数列?bn?的前n项的和为Bn,求证:Bn? anan?12解:(1)由已知得4Sn?(an?1)2,n?2时,4Sn?1?(an?1?1)2,作差得:
224an?an?2an?an?1?2an?1,所以(an?an?1)(an?an?1?2)?0,又因为?an?为正数数列,所以
an?an?1?2,即?an?是公差为2的等差数列,由2S1?a1?1,得a1?1,所以an?2n?1
(2)bn?11111??(?),所以
anan?1(2n?1)(2n?1)22n?12n?1Bn?111111111(1?????)??? 23352n?12n?122(2n?1)2412an??2n?1?,n?1,2,3,333
真题演练1:(06全国1卷理科22题)设数列?an?的前n项的和,Sn?2n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn?,n?1,2,3,Sn,证明:
?Ti?i?1n3. 2412412
解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ① 得 a1=S1= a1-×4+ 所以a1=2
333333
412
再由①有 Sn-1=an-1-×2n+, n=2,3,4,…
333
41n+1n
将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2-2),n=2,3, …
33
整理得: an+2n=4(an-1+2n-1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 :
an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,
4121
(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)
33332
= ×(2n+1-1)(2n-1)
3
2n32n311 Tn= = ×n+1 = ×( - )
Sn2 (2-1)(2n-1)22n-12n+1-13所以, Ti=
2i?1?n?(i?1n113131 - i+1) = ×(1 - n?1) < 2-12-122-122?1i
1
二.先放缩再求和
1.放缩后成等比数列,再求和
1例2.等比数列?an?中,a1??,前n项的和为Sn,且S7,S9,S8成等差数列.
2a1设bn?n,数列?bn?前n项的和为Tn,证明:Tn?.
31?an解:∵A9?A7?a8?a9,A8?A9??a9,a8?a9??a9,∴公比q?a91??. a822∴an?(?)n. bn?1214n11?(?)n2?11. ?4n?(?2)n3?2n(利用等比数列前n项和的模拟公式Sn?Aqn?A猜想)
11(1?2)111122?1(1?1)?1. ∴Bn?b1?b2??bn???????13?23?22333?2n32n1?2真题演练2:(06福建卷理科22题)已知数列?an?满足a1?1,an?1?2an?1(n?N*).
(I)求数列?an?的通项公式; (II)若数列?bn?滿足4b1?14b2?1(Ⅲ)证明:
(I)解:
4bn?1?(an?1)bn(n?N*),证明:数列?bn?是等差数列;
an1a1a2n????...?n?(n?N*). 23a2a3an?12an?1?2an?1(n?N*),
?an?1?1?2(an?1),??an?1?是以a1?1?2为首项,2为公比的等比数列 ?an?1?2n.即 an?22?1(n?N*).
(II)证法一:
4k1?14k2?1...4kn?1?(an?1)kn.
?4(k1?k2?...?kn)?n?2nkn.
?2[(b1?b2?...?bn)?n]?nbn, ①
2[(b1?b2?...?bn?bn?1)?(n?1)]?(n?1)bn?1. ② ②-①,得2(bn?1?1)?(n?1)bn?1?nbn,
2
即(n?1)bn?1?nbn?2?0,nbn?2?(n?1)bn?1?2?0. ③-④,得 nbn?2?2nbn?1?nbn?0,
即 bn?2?2bn?1?bn?0,?bn?2?bn?1?bn?1?bn(n?N*),??bn?是等差数列 (III)证明:
ak2k?12k?11?k?1??,k?1,2,...,n, ak?12?12(2k?1)22 ?aa1a2n??...?n?. a2a3an?12
ak2k?11111111?k?1??????.k,k?1,2,...,n, k?1kkak?12?122(2?1)23.2?2?2232?aa1a2n1111n11n1??...?n??(?2?...?n)??(1?n)??, a2a3an?12322223223
an1aan???1?2?...?n?(n?N*). 23a2a3an?122.放缩后为“差比”数列,再求和
例3.已知数列{an}满足:a1?1,an?1?(1?证明:因为an?1?(1?即an?1?an?即an?1?an?令Sn?nn?1.求证: )a(n?1,2,3?)a?a?3?nn?1n2n2n?1n)an,所以an?1与an同号,又因为a1?1?0,所以an?0, n2nan?0,即an?1?an.所以数列{an}为递增数列,所以an?a1?1, n2nn12n?1,累加得:. a?a?a?????nn12222n2n2n?112n?1112n?1?2???n?1,所以Sn?2?3???n,两式相减得: 222222211111n?1n?1n?1Sn??2?3???n?1?n,所以Sn?2?n?1,所以an?3?n?1, 22222222故得an?1?an?3?
3.放缩后成等差数列,再求和
2例4.已知各项均为正数的数列{an}的前n项和为Sn,且an?an?2Sn.
n?1. 2n?13
an2?an?12(1) 求证:Sn?;
4(2) 求证:SnS?1?S1?S2?????Sn?n?1 222?an?2Sn有解:(1)在条件中,令n?1,得a12?a1?2S1?2a1,?a1?0?a1?1 ,又由条件an2an?1?an?1?2Sn?1,上述两式相减,注意到an?1?Sn?1?Sn得
(an?1?an)(an?1?an?1)?0 ?an?0?an?1?an?0 ∴an?1?an?1
所以, an?1?1?(n?1)?n,Sn?n(n?1) 222n(n?1)1n2?(n?1)2an?an?1???所以Sn? 2224(2)因为n?n(n?1)?n?1,所以
n2?n(n?1)n?1,所以 ?22S1?S2??Sn?n2?3n22Sn?1?121?22?3n(n?1)23n?1????????? 22222212?22???n2?n(n?1)22?Sn2
??;S1?S2??Sn?练习:
1.(08南京一模22题)设函数f(x)?123x?bx?,已知不论?,?为何实数,恒有f(cos?)?0且44f(2?sin?)?0.对于正数列?an?,其前n项和Sn?f(an),(n?N*).
(Ⅰ) 求实数b的值;(II)求数列?an?的通项公式; (Ⅲ)若cn?解:(Ⅰ) b?11,n?N?,且数列?cn?的前n项和为Tn,试比较Tn和的大小并证明之. 1?an61(利用函数值域夹逼性);(II)an?2n?1; 211?11?1?11?1??T?c?c?c?…???+c??,∴n123n????? 2(2n?2)2?2n?12n?3?2?32n?3?6(Ⅲ)∵cn?
2.(04全国)已知数列{an}的前n项和Sn满足:Sn?2an?(?1)n, n?1 (1)写出数列{an}的前三项a1,a2,a3;(2)求数列{an}的通项公式;
4
共分享92篇相关文档