当前位置:首页 > 中考数学培优难题 全优专题 含答案 解析 4:韦达定理应用探讨
中考数学培优难题 全优专题
一、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根
课题:培优难题 全优专题 专题4:韦达定理应用探讨 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 韦达定理说的是:设一元二次方程ax2+bx+c=0?a?0?有二实数根x1,x2,则bcx1+x2=?,x1?x2=。 aa这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系。其逆命题:如果x1,x2满足x1+x2=?,x1?x2=,那么x1,x2是一元二次方程ax2+bx+c=0?a?0?的两个根也成立。 韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式?=b2?4ac?0。 韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。我们将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用。下面通过近年全国各地中考的实例探讨其应用。 baca 1
和与两根积。
典型例题:
例1:(星课堂湖北武汉3分)若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是【 】
A.-2 B.2 C.3 D.1 【答案】C。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程根与系数的关系,得x1+x2=3。故选C。
例2:(湖北武汉3分)若x1、x2是一元二次方程x2+4x+3=0的两个根,则x1·x2的值是【 】
A.4. B.3. C.-4. D.-3. 【答案】B。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程的根与系数的关系,得x1?x2===3。故选B。 例3:(星课堂山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A.x+2x﹣4=0 B.x﹣4x+4=0 C.x+4x+10=0 D.x+4x﹣5=0 【答案】D。
【考点】一元二次方程根的判别式和根与系数的关系。
【分析】根据一元二次方程根的判别式和根与系数的关系,要使方程的两实数根和为﹣4,必须方程根的
2
2
2
2
c3a1b=﹣4。据此逐一作出判断: ab22
A.x+2x﹣4=0:△=b﹣4ac=20>0,x1+x2=﹣=﹣2,所以本选项不合题意;
ab22
B.x﹣4x+4=0:△=b﹣4ac=0,x1+x2=﹣=4,所以本选项不合题意;
a判别式△=b﹣4ac≥0,且x1+x2=﹣
2
C.x+4x+10=0:△=b﹣4ac=﹣28<0,方程无实数根,所以本选项不合题意; D.x+4x﹣5=0:b﹣4ac=36>0,,x1+x2=﹣
故选D。
例4:(星课堂广西来宾3分)已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是【 】
A.-2 B.0 C.1 D.2 【答案】A。
【考点】一元二次方程根与系数的关系。
2
2
2
22
b=﹣4,所以本选项符号题意。 a【分析】设方程的另一个实数根为x,则根据一元二次方程根与系数的关系,得x+1=-1,解得x=-2。 故选A。
练习题:
1. (星课堂重庆市3分)已知一元二次方程2x2?3x?1?0的两根为x1、x2,则x1+x2= ▲ 。 2. (星课堂浙江湖州3分)已知一元二次方程x2?12x?7?0的两个根为x1、x2,则x1+x2的值是【 】
A.-12 B.12 C.-7 D.7
3. (星课堂广西来宾3分)已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1、x2,则x1·x2= ▲ . 4.(星课堂湖北咸宁3分)若关于x的方程x2?2x?m?0的一个根为?1,则另一个根为【 】
A.?3
B.?1
C.1
D.3
5.(星课堂云南昆明3分)若x1,x2是一元二次方程2x2﹣7x+4=0的两根,则x1+x2与x1?x2的值分别是【 】
A、﹣
7,﹣2 2 B、﹣
77,2 C、,2 22 D、
7,﹣2 2二、求对称代数式的值:应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。
所谓对称式,即若将代数式中的任意两个字母交换,代数式不变(f?x,y?=f?y,x?),则称这个代数式
11为完全对称式,如x2+y2, +等。扩展后,可以视x?y中x与?y对称。
xy典型例题:
例1:(星课堂四川攀枝花3分)已知一元二次方程:x﹣3x﹣1=0的两个根分别是x1、x2,则x1x2+x1x2的值为【 】 A. ﹣3 【答案】A。
【考点】一元二次方程根与系数的关系,求代数式的值。 【分析】由一元二次方程:x﹣3x﹣1=0的两个根分别是x1、x2,
根据一元二次方程根与系数的关系得,x1+x2=3,x1x2=―1, ∴x1x2+x1x2=x1x2(x1+x2)=(-1)·3=-3。故选A。
例2:(星课堂山东莱芜3分)已知m、n是方程x2+22x+1=0的两根,则代数式m2+n2+3mn的值为【 】
A.9 B.±3 C.3 D.5 【答案】C。
【考点】一元二次方程根与系数的关系,求代数式的值。
3
2
2
2
2
2
2
B. 3 C. ﹣6 D. 6
【分析】∵m、n是方程x2+22x+1=0的两根,∴m+n=?22,mn=1。 ∴m+n+3mn=22?m+n?2+mn=??22?2+1=8+1=9=3。故选C。
例3:(星课堂江苏南通3分)设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= ▲ . 【答案】4。
【考点】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系。 【分析】∵m、n是一元二次方程x2+3x-7=0的两个根, ∴m 2+3 m-7=0,即m 2+3 m=7;m+n=-3。 ∴m2+4m+n=(m 2+3 m)+(m+n)=7-3=4。
2?6x2?3)?a?4,例4(:星课堂湖北鄂州3分)设x1、x2是一元二次方程x2+5x-3=0的两个实根,且2x1(x2则a= ▲ . 【答案】10。
【考点】一元二次方程的解和根与系数的关系。
【分析】∵x1、x2是一元二次方程x2+5x-3=0的两个实根,∴x22+5x2-3=0,x1x2=-3。
2?6x2?3)?a?4,即2x1(x2 又∵2x1(x22?5x2?3?x2)?a?4,即2x1(0?x2)?a?4。
∴2x1x2?a?4,即2??3??a?4,解得a=10。
练习题:
1. (星课堂湖南张家界3分)已知m和n是方程2x﹣5x﹣3=0的两根,则
2
11+= ▲ . mn222. (星课堂四川泸州3分)设x1,x2是一元二次方程x2 – 3x – 1 =0的两个实数根,则x1?x2?4x1x2的
值为 ▲
3. (星课堂山东日照4分)已知x1、x2是方程2x2+14x-16=0的两实数根,那么
x2x1的值为 ▲ . ?x1x24. (星课堂黑龙江绥化3分)设a,b是方程x2+x-2013=0的两个不相等的实数根,则a2+2a+b的值为 ▲ 11?的值. ab6. (星课堂湖北荆州、荆门3分)关于x的方程ax2?(3a?1)x?2(a?1)?0有两个不相等的实根x1、x2,
5. (星课堂黑龙江大庆4分)若方程x2?x?1?0的两实根为a、b,求且有x1?x1x2?x2?1?a,则a的值是【 】
A.1 B.?1 C. 1或?1 D.2
4
共分享92篇相关文档