云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020高中数学必修2同步练习:1.3.2 球的体积和表面积 Word版含解析

2020高中数学必修2同步练习:1.3.2 球的体积和表面积 Word版含解析

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 17:06:04

1.3.2 球的体积和表面积

课时过关·能力提升

一、基础巩固

1.如果两个球的半径之比为1∶3,那么这两个球的表面积之比为( ) A.1∶9 B.1∶27

C.1∶3

D.1∶1

解析:设两球的半径分别为r,3r,则表面积之比为

答案:A 2.若把3个半径为R的铁球熔成一个底面半径为R的圆柱,则圆柱的高为( ) A.R

B.2R

C.3R

D.4R

解析:设圆柱的高为h,则πR2h=3

所以h=4R. 答案:D 3.若用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( A.8π

B

解析:作轴截面如图所示,则OO1=1.设截面圆的半径为r,球的半径为R. 由已知可得πr2=π,所以r=1,R S球=4πR2=8π.

答案:A 4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )

)

A.18π

B.30π

C.33π

D.40π

解析:由三视图可知该几何体是上面为半球、下面为圆锥的组合体, 所以表面积S 答案:C 5.若圆柱的高与底面直径都和球的直径相等,则圆柱的表面积与球的表面积之比是( ) A.6∶5

B.5∶4

C.4∶3

D.3∶2

解析:设球的半径为R,则圆柱的底面半径为R,母线长为2R,则圆柱的表面积为

2πR2+2πR·2R=6πR2,球的表面积为4πR2.所以圆柱的表面积与球的表面积之比是6πR2∶4πR2=3∶2. 答案:D 6.已知棱长为2的正方体的体积与球O的体积相等,则球O的半径为 . 解析:设球O的半径为r,则 解得r 答案:

7.若长方体ABCD-A1B1C1D1满足

AB2+BC2+ 则 球的表面积为

解析:因为外接球的半径r 所以外接球的表面积为4π

答案:π

8.已知一种空心钢球的质量是142 g,它的 径是5.0 cm,求它的内径.(钢的密度是7.9 g/cm3,最后结果精确到0.1) 解:设空心钢球的内径为2x cm,

由题意得7. -3

则x ≈11.3.

∴x≈2.24.∴2x≈4.5,即所求钢球的内径约为4.5 cm. 二、能力提升

1.已知长方体共顶点的三条棱长分别是3,4,x,且它的8个顶点都在同一个球面上.若这个球的表面积为125 π,则x的值为( ) A.5

B.6

C.8

D.10

又32+42+x2=(2r)2,

解析:设球的半径为r,则4πr2=125π,∴r2

∴9+16+x2=125,∴x2=100,即x=10. 答案:D 2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )

A.9π

B.10π

C.11π

D.12π

解析:该几何体的上部是一个球,其表面积是4π×12=4π;下部是一个圆柱,其表面积是2π×1×3+2π×12=8π. 该几何体的表面积是4π+8π=12π. 答案:D 3.球面上有三点A,B,C组成这个球的一个截面的内 三角形的三个顶点, 中

AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则该球的表面积为 ( ) A.1 200π

B.1 400π

C.1 600π

D.1 800π

解析:∵AB2+BC2=182+242=302=AC2,∴△ABC为直角三角形,且其外接圆的半径为

2

即截面圆的半径r=15.又球心到截面的距离为d 为球的半径),∴

R

∴球的表面积S=4πR2=4π×(1 200π. 答案:A ★4.表面积为16π的球的内 正方体的体积为( ) A.8

B

解析:设表面积为16π的球的半径为r,则4πr2=16π,解得r=2.设内接正方体的棱长为a,则 所以a 答案:C 5.已知圆柱OO'的底面半径为4,高为

所以内接正方体的体积V=a 3

球 的体积等于圆柱 的体积 则球 的半径等于

解析:设球M的半径为r,则 答案:4 解得r=4,即球M的半径为4.

6. 已知某一多面体内 于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,那么该球的表面积是 .

解析:由三视图可知边长为2的正方体内接于球,则球的半径r 所以球的表面积为4πr2=12π. 答案:12π

7.已知盛有水的圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于水中.若取出这两个小球,则水面将下降多少厘米?

解:设取出小球后,容器中的水面下降了h cm,两个小球的体积为V球=

该体积等于它们在容器中排开水的体积V=π×52×h,所以

解得h 取出这两个小球,水面将下降 cm. ★8.已知一倒置圆锥的母线长为10 cm,底面半径为6 cm. (1)求该圆锥的高;

(2)若有一球刚好放进该圆锥(球与圆锥的底面相切)中,求这个球的半径以及此时圆锥剩余空间的体积.

解:(1)设圆锥的高为h cm,底面半径为R cm,母线长为l cm,则h - - 所以圆锥的高为8 cm.

(2)球放入圆锥后的轴载面如图所示,设球的半径为r cm.

易得△OCD∽△ACO1, 则

-

解得r=3.

圆锥剩余空间的体积为圆锥的体积减去球的体积,

即V圆锥-V球 此时圆锥剩余空间的体积为60π cm3.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

1.3.2 球的体积和表面积 课时过关·能力提升 一、基础巩固 1.如果两个球的半径之比为1∶3,那么这两个球的表面积之比为( ) A.1∶9 B.1∶27 C.1∶3 D.1∶1 解析:设两球的半径分别为r,3r,则表面积之比为 答案:A 2.若把3个半径为R的铁球熔成一个底面半径为R的圆柱,则圆柱的高为( ) A.R B.2R C.3R D.4R 解析:设圆柱的高为h,则πR2h=3 所以h=4R. 答案:D 3.若用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( A.8π B

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com