当前位置:首页 > 2019年秋人教版九年级《二次函数》压轴大题专项训练试题(含答案)
2019年秋人教版九年级《二次函数》压轴大题专项训练试题(含答案)
《二次函数》压轴大题专项训练题
一.解答题
1.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点. (1)求抛物线的解析式.
(2)点N是y轴负半轴上的一点,且ON=
,点Q在对称轴右侧的抛物线上运动,连
接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标. (3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.
2.在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为“合适点”例如,点(1,9),(﹣2019,2029)…都是“合适点”. (1)求函数y=2x+1的图象上的“合适点”的坐标;
(2)求二次函数y=x2﹣5x﹣2的图象上的两个“合适点”A,B之间线段的长; (3)若二次函数y=ax2+4x+c的图象上有且只有一个合适点”,其坐标为(4,6),求二次函数y=ax2+4x+c的表达式;
(4)我们将抛物线y=2(x﹣n)2﹣3在x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个“合适点”时,直接写出n的取值范围.
1 / 36
2019年秋人教版九年级《二次函数》压轴大题专项训练试题(含答案)
3.若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),
B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.
(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;
(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;
(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.
4.如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4. (1)求该抛物线的函数解析式.
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=4:3时,求点D的坐标.
(3)如图2,点E的坐标为(0,﹣2),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
2 / 36
2019年秋人教版九年级《二次函数》压轴大题专项训练试题(含答案)
5.如图,在平面直角坐标系中,将矩形AOCD中的点D沿AE对折,使点D落在OC上F点,已知AO=8.AD=10,G(﹣1,7),已知抛物线过点O,F,G. (1)求抛物线的解析式;
(2)点M为抛物线的对称轴上一动点,当|MG﹣MF|取得最大值时,求点M的坐标. (3)一条动直线过平面上一点B,点B的坐标为(3,﹣8),且该直线与(1)中的抛物线交于P、Q两点,请判断;
是否为定值,若是定值请求出定值,着不是定值请
求出其取值范围.(参考公式:在平面直角坐标系中,若H(x1,y1),N(x2,y2),则H,
N两点间的距离为HN=).
6.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7. (1)求此抛物线的解析式. (2)求点N的坐标.
(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.
(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤
),请直接写出S与t的函数关系式.
3 / 36
2019年秋人教版九年级《二次函数》压轴大题专项训练试题(含答案)
7.如图,抛物线y=ax2﹣2x+c与x轴交于点A,B两点,与y轴交于点C,直线y=x+3经过A,C两点.
(1)求抛物线的解析式;
(2)点N是x轴上的动点,过点N作x轴的垂线,交抛物线于点M,交直线AC于点H. ①点D在线段OC上,连接AD、BD,当AH=BD时,求AD+AH的最小值;
②当OC=3OD时将直线AD绕点A旋转45°,使直线AD与y轴交于点P,请直接写出点
P的坐标.
4 / 36
共分享92篇相关文档