当前位置:首页 > 九年级数学下册《解直角三角形》全章教案 新人教版
要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.
(四)总结与扩展
请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.
四、布置作业
1.课本p96 第 3,.4,.6题
第四课时
教学内容:解直三角形应用(三)
(一)教学三维目标 (一)知识目标
使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
(二)能力目标
逐步培养学生分析问题、解决问题的能力. (三)情感目标
渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 二、教学重点、难点
1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.
三、教学过程 1.导入新课
上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.
2.例题分析
例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,
9
求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).
分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?
由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB.
学生在把实际问题转化为数学问题后,大部分学生可自行完成
例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.
另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想.
例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?
60A P 40 3B .
10
引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便?
3巩固练习
为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).
首先请学生结合题意画几何图形,并把实际问题转化为数学问题.
Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB?
(三)总结与扩展
请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决.
本课涉及到一种重要教学思想:转化思想. 四、布置作业
1.某一时刻,太阳光线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).
2.如图6-24,在高出地平面50米的小山上有一塔AB,在地面D测得塔顶A和塔基B的仰面分别为50°和45°,求塔高.
3.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).
11
第五课时
教学内容:解直三角形应用(四)
一.教学三维目标 (一)知识目标致
使学生懂得什么是横断面图,能把一些较复杂的图形转化为解直角三角形的问题.
(二)能力目标
逐步培养学生分析问题、解决问题的能力. (三)情感目标
培养学生用数学的意识;渗透转化思想;渗透数学来源于实践又作用于实践的观点.
二、教学重点、难点
1.重点:把等腰梯形转化为解直角三角形问题; 2.难点:如何添作适当的辅助线. 三、教学过程
1.出示已准备的泥燕尾槽,让学生有感视印象,将其横向垂直于燕尾槽的平面切割,得横截面,请学生通过观察,认识到这是一个等腰梯形,并结合图形,向学生介绍一些专用术语,使学生知道,图中燕尾角对应哪一个角,外口、内口和深度
12
共分享92篇相关文档