当前位置:首页 > 基于J2ME的Java游戏--坦克大战的开发毕业设计论文
GameCanvas提供getKeyStates函数可获取当前键盘上的信息。将以位的形式返回键盘上所有键的按与释放的状态,当bit为1时,键就是被按下的状态,为0时则为释放状态。只需要此一个函数的返回值就可以返回所有键的状态。这保证了快速的按键和释放也会被循环所捕捉。同时,这样的机制也可检测到几个键同时按下的状态,从而提供斜向运行等相应功能。
敌方按照规则不能和用户坦克重合,则它每行走一步就需要把用户坦克扫描一次,判断其是否碰撞到了用户的坦克。Sprite类中提供了collidesWith函数,用于判断是否与某个TiledLayer、Sprite、Image的对象有图象上的重合(即游戏中的碰撞)。然而不能仅仅将用户坦克作为其Sprite参数传递给敌人的类进行判断。因为如果发生碰撞,collidesWith成立,则两辆坦克已经发生了图象重合,违反了规则,甚至若再进行collidesWith判断的话,其结果将永为真。为了提前预知碰撞,可以将所有坦克的碰撞范围设定为一个比坦克图片稍大一些的矩形,此矩形仅在坦克前方比坦克图形多出一个象素。在多出的11个象素中,按照每个象素依次检查此象素是否于外界发生碰撞,如果不是按照象素检查,则当坦克与障碍物错位并同时与两种物体接触时将有可能忽略检测其中的一样物体。这样,就可以提前一步判断。如果发生碰撞,则坦克应当选择掉转方向,此时,两辆碰撞的坦克又因为其矩形区域不重合而不符合collidesWith的条件,就可以继续正常运行了。
敌方坦克由于需要具有一定的智能性,以便对玩家攻击,使之具有一定的可玩性。敌人可以自动行走,但是应当在以下适当的情况下转向:首先是是否超出界面的边界,其次是是否与地图障碍物发生了碰撞,再次是是否与用户坦克发生了碰撞。需要指出的是,当发生阻碍不能在不变方向的情况下继续行走时,并不一定立即需要采取转向的对策。如果一定发生转向,试想,当敌方碰到玩家时,如果它立即转向,将不会对玩家发射射向他的子弹,就不构成任何威胁,当然,也不能永远不转向。本程序设置为:当碰撞到障碍物或边界时立即转向,但碰到玩家坦克时需要有一个等待的时间,这个时间由碰撞前随机取得的在某方向上的持续行走步数决定,当发生坦克间碰撞时,此随机数将在下一次循环前减少为原来的2/3,这样就实现了加快转向的时间,避免死锁在一个方向上静止的停留过长的时间。另外,坦克的发炮间隔和转后的具体方向都由随机数决定。坦克之间由以上道理也不会发生重叠,但当某坦克正从上方生成而正巧有另一辆阻碍在其生成点处,这将导致不可避免的重合。这是允许的,但需要对他们标注状态,即当坦克刚出现时暂时允许重合,一旦在某个时间他们脱离了重合状态,就不能在允许重合,如果不设置这样的判断,刚出现的坦克将会因为受到阻塞而永远不能前进,坦克将混成一团。本程序中并未使用过多复杂的人工智能算法,如有时间,将可能再此方面加以完善。
3.5 子弹的运行和控制
- 14 -
每一个坦克都有他自己的一颗子弹,这颗子弹在任何一辆坦克被构造时就一直存在,直至此坦克生命的结束,子弹的再次只是将屏幕上暂时掩盖的图象重新置于坦克炮筒才恰当位置,并使其显示出来,这与现实中每个子弹都是单独的个体有所不同。
子弹所需要完成的任务有:
它是一个继承了Runnable虚类的可运行单独线程的对象。在其出现在屏幕上的运行周期中,每一步都需要循环检测以下条件:
是否与某坦克发生了碰撞,即击中了这辆坦克。子弹使用的是象素级的碰撞检测,因为子弹的图片形状不规则,如果使用矩形碰撞检测,将有可能在子弹尚未接触到物体时就已返回碰撞的真值。分为两种情况,如果此子弹来自于敌方,将只检测玩家坦克,因为敌方之间的子弹必须允许可以透明的穿过,以保证不会在敌人之间发生子弹的消减。如果来自玩家,则每一步需扫描所有的敌方坦克,检查是否发生碰撞,这可能会花费不少的CPU时间。
其次,子弹之间需要检测是否碰撞。敌人之间显然,如上已经提过,不需要检测,但敌人与玩家之间应当可以互相消除子弹,以便在狭窄的路口中仍有存活的机会。玩家的子弹需要在每一步检测所有敌人的子弹的运行状态。这样较多的运算也将不可避免的耗费大量CPU时间。
子弹对不同障碍物将有不同的反映。对砖墙将有能力将其击毁,使之在画面上消失;对水泥钢筋将不能发生作用,子弹也不能通过;对于河流,坦克不可以通过,但子弹可以;对于草丛,子弹和坦克都可以通过。
3.6 RMS数据库系统
MIDP为MIDlets提供了一种永久存储和后来读出数据的数据库解决方案,被称为Record Managerment System(RMS),是一种类简单的基于记录的数据库。 很显然,手机上的数据库系统不可能有PC上的强大功能。微小的存储空间也限制了它们的结构不能过于复杂。RMS是专门针对移动设备的服务的。
RMS包中包括RecordStore类。在一个MIDlet suite包里的所有MIDlet都允许创建多个记录集,只要它们赋有不同的名称。当MIDlet包从平台中被移除后,所有与该包有关的的记录集都同时会被移除。同一个包内的MIDlets可以直接互相访问它们的记录集,不同包内也可产生共享,但这需要有包的授权属性决定。访问模式会在准备提供共享的RecordStore被建立时被创建。访问模式允许私有使用或访问。
RecordStore的API采用了时间戳的概念,其长整型变量由System的currentTimeMillis()函数返回决定。Record store 每次被修改后都会自动在其属性上附加上时间戳,这为同步化引擎和程序的控制都极为有效。
记录是字节数组。开发者可以利用InputStream的派生类DataInputStream、DataOutputStream以及ByteArrayInputStream、ByteArrayOutputStream将不
- 15 -
同种类的数据类型打包,以字节流的形式发送和接收。
区别记录的唯一标记是他们的ID值,作为记录集的主键。第一项记录的ID是1,其后的每个记录ID递增。
Record是以字节为基本单位来存放的,所以所有要写入record的数据都必须先将其转为字节才能写入,从record所读出来的数据也是字节,必须将其转换为原先写入时的数据类型才有意义。
然而读取或写入的字节数组都只能代表一个字段的信息,如果需要读取或写入多个字段就必须要将数据转换成字节信息,并且提供适当的机制来分隔这些信息。主要有两种方法:
1. 标记法。
将所有要存放的数据用字符串表示,但是在字段和字段之间以一个特殊的符号作为分隔。符号不能和字段内的数据相同的字符。
2.利用输入/输出流
这一种方法较上一种复杂,但是较为实用。方法一中所有的字段只能以字符串的形式存储,要对这些字段作进一步的处理非常麻烦。利用输入输出流可以写入及读取不同数据类型的数据,做法是在写入数据时先将一个DataOutputStream数据流对象串接到一个ByteArrayOutStream数据流对象,然后再依字段的数据类型用writeInt()、writeBoolean()等方法写入,最后把
ByteArrayOutputStream内的元素数据写入record中。反之若要读取数据,则先要串接一个DataInputStream对象和ByteArrayInputStream,依字段的数据类用readInt()、readBoolean()等方法读取。
本程序中主要存放在永久区的内容为用户得到的最高分数的记录。一共可以存储10条最高分。每次有新的更高的记录就会插入进相应的位置,将最低一名排挤出记录。在输入记录前,要求用户在TextField框中写入他自己的名字。返回的getString可以将名字输送给字节流。因为每个记录包括用户名和分数,因此需要使用多字段的方式编入。打印到屏幕上时,记录ID号即为排名,因此将显示三项数据。
3.7 内存使用的最佳化
通常在MIDP应用程序的手机执行环境中,所牵涉的内存有下列三种: ﹡应用程序存储内存 ﹡RecordStore存储内存 ﹡执行时期内存(Java Heap)
其中前两种是持久性的内存,关闭电源后还能保持数据的正确性,通常这两种内存所能存储的容量是合并计算的,这个上限对每种手机都不一样,大部分在一两百KB内。在这样的情况下需要在不影响原有功能的情况下适当的缩减JAR文件的大小,除了可以克服内存空间的限制外,也能大幅度缩短下载的时间(费
- 16 -
用也降低了),势必会有更多的人愿意下载所开发的程序。其方法有:
第一,就是尽量缩短命名的长度。在应用程序内,对于所建立的类、接口、方法及变量名而言,都需要赋予一个识别的名称,所命名的名称每多一个字符就会在类文件内多产生一个字节,对于一个较复杂的应用程序而言就会增加为数不小的数据量。所有这些可以借助混淆器来帮助实现。
第二是减少复杂的程序结构,为一些共同的行为建立一个抽象类(Abstract Class) 来表示继承的子类的共通性。
第三是减少图形数据的大小。将PNG格式的小分辨率图象合并在一张大的高分辨率图象中,由于减少了chunks,将比合并前的总大小减少许多。
3.8 混淆器(Obfuscator)的使用
Java 语言并没有完全编译成二进制可执行文件,编译出的.class文件是一种介于源程序和二进制之间的一中基于半解释的字节码,需要虚拟机来执行。它包括了所有的信息。然而这样会导致.class很容易被反编译为源代码,从而不能保护作者的知识成果。目前流行的如decode,JAD等反编译工具可以以很快的速度生成源文件。如果不加以施行有效的措施,将造成严重的后果。
由此引入混淆器的概念。混淆器将代码中的所有变量、函数、类的名称变为简短的英文字母代号,如果缺乏相应的函数名指示和程序注释,即使被反编译,也将难以阅读。
混淆器的作用不仅仅是保护代码,它也有精简编译后程序大小的作用。由于以上介绍的减少变量、函数的命名长度的关系,编译后也会从.class文件中减少这些冗余的信息。混淆后,体积大约能减少25%,这对当前费用较贵的无线网络传输是有一定意义的。
为了能与各种IDE集成,就像Java2 SDK一样,混淆器采用命令行参数的形式,以便可被其调用。目前流行的Obfuscator有RetroGuard等。
3.9 模拟器的相关调试
IDE整合的Wireless Tool Kit提供了许多在运行时监视运行状态的工具。 包括内存状况的检测(手机上的内存空间十分有限,必须时刻关注机载内存是否大于程序所能使用到的最大可能的内存空间),网络状况的检测,运行函数的跟踪等。如图3-4,是内存跟踪测试随时间变化的调试器。其中,允许强制垃圾回收(Garbage Collection)。由于Java语言中,不像许多其他的如C++语言,不需要指定回收函数中特定不使用的资源,资源回收机制将自动清空无效变量占用的空间。在程序运行中也可以调用System类的gc()函数手动收回废弃的内存。
- 17 -
共分享92篇相关文档