当前位置:首页 > 2013年内蒙古自治区数据分析高级
1、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。
(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true (2)s,n-1 // Knap←Knap(s,n-1)
2、二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下: typedef struct
{ int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界
int f; //层次序列中当前“根结点”的双亲结点的指针 int lr; // 1—双亲的左子树 2—双亲的右子树 }qnode;
BiTree Creat(datatype in[],level[],int n)
//由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\\n”); exit(0);}
qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大 init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点 BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点 p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据
for (i=0; i if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树 {p->lchild=null; s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 3、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。
共分享92篇相关文档