当前位置:首页 > 2004至2010年浙江省高等数学(微积分)竞赛工科类试题
(1)求limxn; (2)证明数列
n???xn?单调减少.
解:(1)显然 2n?12n?1n2?2n?xn?n2 故有
limn??xn?0.
2?n?1?(2)xn?1??1n2?k k?02n
??11k?0?n?1?2?k?1?n?1?2?2n?1??n?1?2?2n?2,
2n
x2?11?n?xn?1???k?0?n2?k??n?1?n?1?2?k???n2?4n?2?n2?4n?3??
???2n?1??2n?1??1n2?2n??n2?4n?1???1??n2?2n?n2?4n?1??
?2n??n?1?n2?2n??n2?4n?1??0,
于是数列?xn?单调减少.
六.解:(1)
f?x??13x2?23,在?0,???上严格单调递增,
欲使
f?a,b???a,b?,必有f?a??a,f?b??b. 考虑
f?x??123x2?3?x,
x2?3x?2?0,
?22?3??1??x?2?????2??,
x1?1,x2?2,
所以存在区间
?1,2?,使f?1,2???1,2?.
13
(3)f?x?在?0,???上严格单调减少,
欲使
f?a,b???a,b?,必有f?a??b,f?b??a.
1a?b,1b?a, 所以存在区间???a,1?a??,?0?a?1?,使得
f???a,1??1?a?????a,a??. (4)f?x?在?0,???上严格递增,
欲使f?a,b???a,b?, 必须
f?a??a,f?b??b.
f?x??1?1x?x, x2?x??1,
?2??x?1?2????34,此方程无实数解, 故不存在区间?a,b?,?a?0?,使得f?a,b???a,b?.
2006浙江省高等数学(微积分)竞赛试题一、
计算题(每小题12分,满分60分)
1、计算limn??n???????1?x?nn???ex??.
??????n???nx???x?x?x?ex?????1?x??x????解: ?limn??n????1?????limnex????n????n??????n??e??1?? ??????????????? 14
???n???x?n1?x?x?e????1?x??x?e?limn??nex???????1??n????1???limnex?n?x ??e????n??e?????????n??1?x?x1?x2ex?1lim?n???en??x?x2ex?1lim?1?t?t?et?0t nt??ln(1?t)01?t?11?t?0t?x2ex?1limt2 t?01?x2exlimt?(1?t)ln(1?t)t)t2
t?0(1??x2exlimt?(1?t)ln(1?t)t?0t2
0?0x2exlim1?1?ln(1?t)t?02t
??x2ex2。 2、求?1?x4?x8x(1?x8)dx.
: ?1?x4?x811?x4?x8211?x2?x4解x(1?x8)dx?2?x2(1?x8)dx?2?x(1?x4)dx ?11?x2?x4211?x4??x2x2(1?x4)dx?4?x(1?x2)dx ?1?31??ABC?1??21?2?4???x?1?x?x?1??dx?4????x?1dx?x?1x? ????1?4???32ln(x?1)?lnx?12ln(x?1)????C ??38ln(x?1)?114lnx?8ln(x?1)?C.
15
23、求?1dy1?ex0?y???ey2??x??dx. ?解: ?1dy1?ex2x20?y???ey2??x??dx???10dy?1eyxdx??10dy?1yey2dx ??1dx?xex200xdy??1dy?1yey20dx
??1x21y)ey20edx??(1?dy??12e?100xexdx?2. 4、求过(1,2,3)且与曲面z?x?(y?z)3的所有切平面皆垂直的平面方程.
解:令F(x,y,z)?x?(y?z)3?z
则F2x?(x,y,z)?1,Fy?(x,y,z)?3(y?z),Fz?(x,y,z)??3(y?z)2?1令所求平面方程为: A(x?1)?B(y?2)?C(z?3)?0,
在曲面z?x?(y?z)3上取一点(1,1,1),则切平面的法向量为{1,0,?1}, 则A?C?0
在曲面z?x?(y?z)3上取一点(0,2,1),则切平面的法向量为{1,3,?4}, 则A?3B?4C?0. 解得: A?B?C
即所求平面方程为: x?y?z?6.
二、(15分)设f(x)?ex?x36,问f(x)?0有几个实根?并说明理由.
解: 当x?0, ex?0?x36
0, e0?0且ex的增长速度要比x3当x?6来得快!所以f(x)?0无实根.
??3三、(满分20分)求???xn??中x20的系数.
n?1?333解: 当x?1时, ???n??x??1?3??xn?1?????1?x?????1?x???x
16
共分享92篇相关文档