云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 新北师大版八年级数学下册第6章《平行四边形》教案

新北师大版八年级数学下册第6章《平行四边形》教案

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 18:45:39

2、思考:四边形ABCD是平行四边形吗?

3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?

目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE=由此引出课题.。

效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。

1BC. 2第二环节:教师讲授,传授新知

内容: 引入三角形中位线的定义和性质

1.定义三角形的中位线,强调它与三角形的中线的区别.

2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。

第三环节:师生共析,证明定理

内容:已知:如图6-20(1),DE是△ABC的中位线. 求证:DE∥BC,DE=1/2BC

证明:如图6-20(2),延长DE到F,使 DE=EF,连接CF. 在△ADE和△CFE中 ∵AE=CE,∠1=∠2,DE=FE

∴△ADE≌△CFE ∴∠A=∠ECF,AD=CF ∴CF∥AB ∵BD=AD ∴BD=CF

∴四边形DBCF是平行四边形 ∴DF∥BC,DF=BC ∴DE∥BC,DE=1/2BC

目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程,积累数学活动的经验.

第四环节:灵活运用,自我检测

内容:如图,顺次连结四边形四条边的中点,所得的四边形有什么特点?

学生容易发现:四边形ABCD是平行四边形

已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.

分析:

(1) 已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形. 练一练:

1. A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的

方法估测出了A,B间 的距离:在AB外选一点C,连结AC和BC,并分别 找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么 ?

2.已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为cm,面积为cm2,为原三角形面积的。

3.如图,在四边形ABCD中,E、F、G、H分别是AB、CD、 AC、BD的中点 。四边形EGFH是平行 四边形吗? 请证明你的结论。

目的:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用.

第五环节:回顾小结,共同提升

本节课学了哪些内容?

第六环节:分层作业,拓展延伸

1、习题6.6 1, 2, 3题 2、完成《学考精练》对应练习

教学反思

本节课以探究三角形中位线的性质及证明为主线,开展教学活动。在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明。通过知识的形成过程,使学生体会探究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质。

同时,问题是创造性思维的起点,是兴趣的激发点。好的问题情境,可以调动学生主动积极的探究。本课采用问题驱动,从概念的产生,到概念的辨析、再到定理的发现及证明,设计了一个个问题,层层递进,激活了学生的思维,促使学生不断的深入思考。

4. 多边形的内角和与外角和(一)

知识与技能目标

掌握多边形内角和定理,进一步了解转化的数学思想

过程与方法目标

经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.

情感态度与价值观

让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

教学重点:多边形内角和定理的探索和应用

教学难点:多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透. 教学方法:师生共同讨论法.

教学过程

第一环节 创设现实情境,提出问题,引入新课

1.三角形是如何定义的?

2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗? 3.结合图形认识多边形的顶点、边、内角及对角线。

目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。同时渗透类比思想。

第二环节 实验探究

1.三角形的内角和是多少度?你是怎么得出的?

①用量角器度量:分别测量出三角形三个内角的度数,再求和。

②拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。

目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。

2.四边形的内角和是多少?你又是怎样得出的?

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2、思考:四边形ABCD是平行四边形吗? 3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢? 目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE=由此引出课题.。 效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。 1BC. 2第二环节:教师讲授,传授新知 内容: 引入三角形中位线的定义和性质 1.定义三角形的中位线,强调它与三角形的中线的区别. 2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半 目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。 第三环节:师生共析,证明定理 <

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com