当前位置:首页 > 中考数学压轴题100题精选(1-10题)答案2013
中考数学压轴题100题精选(1-10题)答案
【001】解:(1)
抛物线y?a(x?1)2?33(a?0)经过点A(?2,0),
?0?9a?33?a??3 ······································································································· 1分 3322383 ························································· 3分 x?x?333?二次函数的解析式为:y??(2)
D为抛物线的顶点?D(13,3)过D作DN?OB于N,则DN?33,
AN?3,?AD?32?(33)2?6??DAO?60° ··························································· 4分 OM∥AD
y D M C ①当AD?OP时,四边形DAOP是平行四边形 ?OP?6?t?6(s) ······················································· 5分
②当DP?OM时,四边形DAOP是直角梯形
A H P B x 过O作OH?AD于H,AO?2,则AH?1 O E N Q (如果没求出?DAO?60°可由Rt△OHA∽Rt△DNA求AH?1) ?OP?DH?5t?5(s) ·········································································································· 6分
③当PD?OA时,四边形DAOP是等腰梯形 ?OP?AD?2AH?6?2?4?t?4(s)
综上所述:当t?6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. ·· 7分
,OC?OB,△OCB是等边三角形 (3)由(2)及已知,?COB?60°?OQ?6?2t(0?t?3) 则OB?OC?AD?6,OP?t,BQ?2t,过P作PE?OQ于E,则PE?3·················································································· 8分 t ·22?SBCPQ当t?1133?3?63??6?33??(6?2t)?t=···································· 9分 3 ·?t???2222?2?83633 ·时,SBCPQ的面积最小值为··········································································· 10分
2833?此时OQ?3,OP=,OE?24?QE?3?39?44PE?33 41
?33??9?23322 ······························································ 11分 ?PQ?PE?QE????B ?4????2???4?8【002】解:(1)1,;
5E Q B A F D C 2(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP?3?t. 由△AQF∽△ABC,BC?5?3?4, 得
QFt414?.∴QF?t. ∴S?(3?t)?t, 45255Q D C 22E 图3
P 26即S??t2?t.
55A P (3)能.
图4 ①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°.
B 由△APQ ∽△ABC,得
AQAP, ?ACABA Q D P E C t3?t9即?. 解得t?. 358②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得
AQAP, ?ABACQ 图5
B t3?t15即?. 解得t?. 538
G
(4)t?545或t?. 214D A P C(E) B G 【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6. 34PC?t,QC2?QG2?CG2?[(5?t)]2?[4?(5?t)]2.
55534由PC2?QC2,得t2?[(5?t)]2?[4?(5?t)]2,解得t?.
255图6 Q D A P C(E)
方法二、由CQ?CP?AQ,得?QAC??QCA,进而可得
?B??BCQ,得CQ?BQ,∴AQ?BQ?图7 55.∴t?. 22②点P由A向C运动,DE经过点C,如图7.
34(6?t)2?[(5?t)]2?[4?(5?t)]2,t?45】
5514【003】解.(1)点A的坐标为(4,8) …………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
2
8=16a+4b
得
0=64a+8b
解 得a=-
1,b=4 212
x+4x …………………3分 2PEBCPE4(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=
APABAP811∴PE=AP=t.PB=8-t.
221∴点E的坐标为(4+t,8-t).
21111∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分
222811∴EG=-t2+8-(8-t) =-t2+t.
881∵-<0,∴当t=4时,线段EG最长为2. …………………7分
8∴抛物线的解析式为:y=-
②共有三个时刻. …………………8分 t1=
164085, t2=,t3= . …………………11分 3132?528?A点坐标为??4,.x??0,得x??4.0?
33【004】(1)解:由
?B点坐标为?8,.由?2x?16?0,得x?8.(2分) 0?∴AB?8???4??12.28?y?x?,?x?5,?由?解得∴C点的坐标为?5,.6?(3分) 33??y?6.??y??2x?16.11AB·yC??12?6?36.(4分) 2228?yD??8??8.(2)解:∵点D在l1上且xD?xB?8, ∴D点坐标为?8,.8?(5分)又∵点
33∴S△ABC?E在l2上且yE?yD?8,∴E点坐标为?4,.??2xE?16?8.?xE?4.8?(6分)
∴OE?8?4?4,EF?8.(7分)
①当0≤t?3时,(3)解法一:如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR(t?0时,为四边形CHFG).过C作CM?AB于M,则Rt△RGB∽Rt△CMB.
yyy l2 l2 l2 l1l1l1E E E D D D C C 3 C R R R A F O G M B x A O F M G B x F A G O M B x
BGRGtRG?,,即?∴RG?2t.Rt△AFH∽Rt△AMC, BMCM36112∴S?S△ABC?S△BRG?S△AFH?36??t?2t??8?t???8?t?.
223421644.即S??t?t?(10分)
333【005】(1)如图1,过点E作EG?BC于点G.····················· 1分
A
∵E为AB的中点,
1∴BE?AB?2. E 2在Rt△EBG中,∠B?60?,∴∠BEG?30?. ··············· 2分
1B 22∴BG?BE?1,EG?2?1?3. G
2∴
即点E到BC的距离为3. ················································· 3分
D F C
图1
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.
同理MN?AB?4. ············································································································ 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. N
A D ∴PH?13 PM?.22B
E
P H F C
图2
3∴MH?PMcos30??.
235则NH?MN?MH?4??.
22G M 2?5??3?22在Rt△PNH中,PN?NH?PH????? ?7.????2??2?2∴△PMN的周长=PM?PN?MN?3?7?4. ··················································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形. 当PM?PN时,如图3,作PR?MN于R,则MR?NR.
3. 2∴MN?2MR?3. ·············································································································· 7分
类似①,MR?4
共分享92篇相关文档