云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 全国各地2015年中考数学试卷解析分类汇编(第2期)专题40 动态问题 - 图文

全国各地2015年中考数学试卷解析分类汇编(第2期)专题40 动态问题 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 16:04:40

, 当∠QPB=90°时, 点P和点Q的横坐标相同, ∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴t﹣1=3﹣t, 解得t=2, 即当t=2时,△BPQ为直角三角形. ②如图2, , 当∠PQB=90°时, ∵∠PBQ=45°, ∴BP=, ∵BP=3﹣(t﹣1)=4﹣t,BQ=, ∴4﹣t= 即4﹣t=2t, 解得t=, 即当t=时,△BPQ为直角三角形. 综上,可得 17

当△BPQ为直角三角形,t=或2. (3)如图3,延长MQ交抛物线于点N,H是PQ的中点, , 设PQ所在的直线的解析式是y=cx+d, ∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t), ∴, 解得. ∴PQ所在的直线的解析式是y=x+, ∴点M的坐标是(0,) ∵,, ∴PQ的中点H的坐标是(1,) 假设PQ的中点恰为MN的中点, ∵132﹣0=2,=, ∴点N的坐标是(2,), 又∵点N在抛物线上, 18

∴=2﹣232﹣3=﹣3, 2解得t=∵>或t=﹣, (舍去), ∴当t<2时,延长QP交y轴于点M,在抛物线上不存在一点N,使得PQ的中点恰为MN的中点. 点评:( 1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力. (2)此题还考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. (3)此题还考查了待定系数法求函数解析式的方法,要熟练掌握. 2

3.(2015?永州,第26题10分)已知抛物线y=ax+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.

(1)求抛物线y=ax+bx+c的解析式;

(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;

(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.

2

考点:二 次函数动点综合题.. 专题:计 算题. 分析: 2(1)设顶点式y=a(x﹣1),然后把(0,)代入求出a即可; (2)根据二次函数图象上点的坐标,设P(x,(x﹣1)),易得PM=(x﹣1)+1,然后利用两点的距离公式计算PR,得到PR=(x﹣1)+[(x﹣1)﹣1],接着根据完全平方公式变形可得PR=[(x﹣1)+1],则PR=(x﹣1)+1,所以PR=PM,于2222222222 19

是可判断点P到R的距离与点P到直线y=﹣1的距离恒相等; (3)根据(2)的结论得到得QN=QR,PR=PM,则PQ=PR=QR=PM+QN,再证明EF为梯形PMNQ的中位线,所以EF=(QN+PM),则EF=PQ=EQ=EP,根据点与圆的位置关系得到点F在以PQ为直径的圆上,则根据圆周角定理得∠PFQ=90°,即有PF⊥QF. 2解答:( 1)解:设抛物线解析式为y=a(x﹣1), 把(0,)代入得a=, 所以抛物线解析式为y=(x﹣1); (2)证明:如图1,设P(x,(x﹣1)),则PM=(x﹣1)+1, ∵PR=(x﹣1)+[(x﹣1)﹣1]=(x﹣1)+[(x﹣1)]﹣(x﹣1)+1=[(x﹣1)]+(x﹣1)+1=[(x﹣1)+1], ∴PR=(x﹣1)+1, ∴PR=PM, 即点P到R的距离与点P到直线y=﹣1的距离恒相等; (3)证明:由(2)得QN=QR,PR=PM, ∴PQ=PR=QR=PM+QN, ∵EF⊥MN,QN⊥MN,PM⊥MN, 而E为线段PQ的中点, ∴EF为梯形PMNQ的中位线, ∴EF=(QN+PM), ∴EF=PQ, ∴EF=EQ=EP, ∴点F在以PQ为直径的圆上, ∴∠PFQ=90°, ∴PF⊥QF. 242222222242222 点评:本 题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和梯形的中位线性质;理解坐标与图形性质;会利用待定系数法求二次函数解析式和利用两点间的距离公式计算线段的长.要充分运用(2)的结论解决(3)中的问题. 20

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

, 当∠QPB=90°时, 点P和点Q的横坐标相同, ∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴t﹣1=3﹣t, 解得t=2, 即当t=2时,△BPQ为直角三角形. ②如图2, , 当∠PQB=90°时, ∵∠PBQ=45°, ∴BP=, ∵BP=3﹣(t﹣1)=4﹣t,BQ=, ∴4﹣t= 即4﹣t=2t, 解得t=, 即当t=时,△BPQ为直角三角形. 综上,可得 17 当△BPQ为直角三角形,t=或2. (3)如图3,延长MQ交抛物线于点N,H是PQ的中点, , 设PQ所在的直线的解析式是y=cx+d, ∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t), ∴, 解得. ∴PQ所在的直线的解析式是y=x+, ∴点M的坐标是(0,) ∵,, ∴PQ的中点H的坐标是(1,) 假设PQ的中点恰为MN的中点,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com