当前位置:首页 > 线代习题答案(1)
线性代数习题及答案
习题一 (A类)
1. 求下列各排列的逆序数.
(1) 341782659; (2) 987654321;
(3) n(n?1)…321; (4) 13…(2n?1)(2n)(2n?2)…2. 【解】
(1) τ(341782659)=11; (2) τ(987654321)=36;
(3) τ(n(n?1)…3·2·1)= 0+1+2 +…+(n?1)=
n(n?1); 2(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1). 2. 求出j,k使9级排列24j157k98为偶排列。
解:由排列为9级排列,所以j,k只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j的逆序为1,5的逆序数为0,k的为1,符合题意;若j=6,k=3,则j的逆序为0,5的逆序数为1,k的为4,不符合题意. 所以j=3、k=6.
3. 写出4阶行列式中含有因子a22a34的项。 解:D4=(?1)?(j1j2j3j4)a1j1a2j2a3j3a4j4 j3?4.
由题意有:j2?2,故j1j2j3j4?j124j4???1243 ?3241D4中含的a22a34项为:(?1)?(1243)a11a22a34a43?(?1)?(3241)a13a22a34a41 即为:?a11a22a34a43?a13a22a34a41
4. 在6阶行列式中,下列各项应带什么符号? (1)a23a31a42a56a14a65;
解:a23a31a42a56a14a65?a14a23a31a42a56a65
因为?(431265)?6,(?1)?(431265)?(?1)6?1 所以该项带正号。 (2)a32a43a14a51a66a25
解:a32a43a14a51a66a25?a14a25a32a43a51a66 因为?(452316)?8,(?1)?(452316)?(?1)8?1 所以该项带正号。
5. 用定义计算下列各行列式.
020012300(1)
001002003000; (2)03045. (3)?000400010n【解】(1) D=(?1)τ
(2314)
4!=24; (2) D=12.
??a12?1?a23?2(3)由题意知:?????an?1,n?n?1
??an,1?n??其余aij?0所以
Dn?(?1)?(j1j2?jn)a1j1a2j2a3j3?anjn?(?1)?(234?n1)a12a23a34?an?1,nan1?(?1)n?1
?1?2?3???(n?1)?n?(23?n1)?n?1?(?1)n?1?n!6. 计算下列各行列式.
214?1(1)
3?12?1ab?ac?ae123?2; (2) ?bdcd?de; 506?2?bf?cf?ef
10?02???00?00?00?n?10
a?1001b?10(3); (4)
01c?1001d503?112506236?2?1?0; ?2?212342341341241. 23【解】(1) Dr1?r21?1?1(2) D?abcdef?11?1??4abcdef;
?1?1?1b?101?10?c?11?1?(3)D?a1c?1?(?1)20c?1?a?b???cd?1
1d0d??01d01d?abcd?ab?ad?cd?1;10c1?c210(4)D?c1?c310c1?c4107. 证明下列各式.
2341b213412410234101r2?r1011?3r3?2r20??r4?r203?r102r2?2?2r4?r130?1?1?1023411?3?160.
0?4400?4a2(1) 2aab1a?b2b?(a?b)3;
1(2)
a2b2c2(a?1)2(b?1)2(c?1)a32(a?2)2(b?2)2(c?2)2(a?3)2(b?3)2(c?3)2?0;
d2(d?1)22(d?2)2(d?3)21aa21a2 (3) 1b1c2b3?(ab?bc?ca)1bb2 c31cc2
a?(4) D2n?0ac?01?1?0?bd?011?1?anb00dn?1?n??1????ai. ?i?1ai?i?100c?(ad?bc)n;
1?a1(5)
1?11?a2?【证明】(1)
2(a?b)(a?b)b(a?b)bc1?c3左端?2(a?b)a?b2bc2?c3001
?(a?b)(a?b)b(a?b)a?bb?(a?b)2?(a?b)3?右端.2(a?b)a?b212a?12b?12c?12d?14a?44b?44c?44d?4x3a3b3a2c2-c1b2(2) 左端?2c3?c1cc4?c1d26a?96b?9c3-2c2?c?6c?943c26d?9a2b2c2d22a?12b?12c?12d?1222266?0?右端. 66(3) 首先考虑4阶范德蒙行列式:
f(x)?1xx21aa21bb1c2?(x?a)(x?b)(x?c)(a?b)(a?c)(b?c)(*)
c2c31aa2从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为
(ab?bc?ac)(a?b)(a?c)(b?c)?(ab?bc?ac)1bb2,
1cc2但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故
1a2(?1)1?11b21c2(4) 对D2n按第一行展开,得
a3b3, c3
共分享92篇相关文档