当前位置:首页 > 苏教版数学中考总复习中考总复习:图形的变换--知识点整理及重点题型梳理(提高)
精品文档 用心整理
(3)这些点形成的图象是一段抛物线. 函数关系式:y=12x+3(0≤x≤26). 12【总结升华】本题是一道几何与函数综合题,它以“问题情境--建立模型--解释、应用与拓展”的模式,通过动点P在AB上的移动构造探究性问题,让学生在“操作、观察、猜想、建模、验证”活动过程中,提高动手能力,培养探究精神,发展创新思维. 类型三、旋转变换
5.(2016?本溪)已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M. (1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是 ;
(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由. (3)如图③,若
,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.
【思路点拨】(1)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质再用中位线即可;
(2)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质,再用中位线即可; (3)同(1)(2)的方法作出辅助线,利用平行线中的基本图形“A”得出比例式,用勾股定理求出x,最后用三角形的面积公式即可. 【答案与解析】 解:(1)如图1,
资料来源于网络 仅供免费交流使用
精品文档 用心整理
将△ABC绕点A顺时针旋转90°,得到△AB'C', ∴B'Q=BP,AB'=AB, 连接BB', ∵AC⊥BC,
∴点C在BB'上,且CB'=CB, 依题意得,∠C'B'B=90°, ∴CM∥B'C',而CB'=CB, ∴2CM=B'Q, ∵BP=B'Q, ∴BP=2CM, 故答案为:BP=2CM; (2)BP=2CM仍然成立,
理由:如图2,
将△ABC绕点A顺时针旋转90°,得到△AB'C',连接B'Q, ∴B'Q=BP,AB'=AB, 连接BB', ∵AC⊥BC,
∴点C在BB'上,且CB'=CB, 依题意得,∠C'B'B=90°, ∴CM∥B'C',而CB'=CB, ∴2CM=B'Q,
资料来源于网络 仅供免费交流使用
精品文档 用心整理
∵BP=B'Q, ∴BP=2CM, (3)如图3,
设BC=2x,则AC=5x,
将△ABC绕点A顺时针旋转90°,得到△AB'C',连接B'Q, ∴BC=B'C',B'Q=BP,AC=AC' 延长BC交C'Q于N, ∴四边形ACNC'是正方形, ∴C'N=CN=AC=5x, ∴BN=CN+BC=7x ∵CM∥QN, ∴∵CM=2, ∴∴QN=7,
∴BP=B'Q=C'N+QN﹣B'C'=5x+7﹣2x=3x+7, ∴PC=BC+BP=2x+3x+7=5x+7,
在Rt△ACP中,AC=5x,PC=5x+7,AP=13, 根据勾股定理得,(5x)+(5x+7)=13 ∴x=1或x=﹣
(舍),
2
2
2
∴BP=3x+7=10,AC=5x=5, ∴S△ABP=BP×AC=×10×5=25.
【总结升华】此题是几何变换综合题,主要考查了等腰直角三角形和直角三角形的性质,旋转的性质,
中位线的性质,解本题的关键是作出辅助线,也是本题的难点.
资料来源于网络 仅供免费交流使用
精品文档 用心整理
6 . 如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处). 小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即OO1和
OO12,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于
扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合, 然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动 到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……, 按上述方法经过若干次旋转后.她提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运 动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶 点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是_______________? 请你解答上述两个问题.
【思路点拨】求出正方形OABC翻转时点O的轨迹弧长, 再求面积即可.要理解的是第4n次旋转,顶点O没有移动. 【答案与解析】
解:问题①:如图,正方形纸片经过3次旋转,顶点O运动所形成的图形是三段圆弧OO1, O1O2, O2O3,
90???190???2?2??2??? 所以顶点O在此运动过程中经过的路程为?1?2???. 180180??资料来源于网络 仅供免费交流使用
共分享92篇相关文档