云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 数字图像处理实验指导书

数字图像处理实验指导书

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 5:56:30

实验三、图像增强

一、

实验目的

1掌握灰度直方图的概念及其计算方法;

2熟练掌握直方图均衡化和直方图规定化的计算过程; 3熟练掌握空间域滤波中常用的平滑和锐化滤波器; 4掌握色彩直方图的概念和计算方法; 5利用MATLAB程序进行图像增强。

二、 实验原理

图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法可以在课后自行练习。

直方图是多种空间域处理技术的基础。直方图操作能有效地用于图像增强。除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为实时图像处理的一个流行工具。

直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。

图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

(1)直方图均衡化增强图像对比度的MATLAB程序: I=imread(‘*.gif); % 读入原图像

J=histeq(I); %对原图像进行直方图均衡化处理 Imshow(I); %显示原图像

Title(‘原图像’); %给原图像加标题名

Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像 Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名

Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图

Imhist(I,64); %将原图像直方图显示为64级灰度 Title(‘原图像直方图’) ; %给原图像直方图加标题名 Subplot(1,2,2); %作第2幅子图

Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度

Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名

处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。

(2)采用线性变换进行图像增强的MATLAB程序

参见课本第58页例4.1。

(3)采用邻域平滑算法增强图像的MATLAB程序 参见课本第64页例4.4;第66页例4.5。

(4)采用边界锐化算法增强图像的MATLAB程序

参见课本第70页例4.6;第71页例4.7;第73页例4.8。

三、 实验步骤

1打开计算机,启动MATLAB程序;程序组中“work”文件夹中应有待处理的图像文件;

2调入“实验一”中获取的数字图像,并进行计算机图像增强处理; 3显示原图像及直方图和经过增强处理过的图像及其直方图。 4记录和整理实验报告

四、 实验仪器

1计算机;

2 MATLAB程序;

3移动式存储器(软盘、U盘等)。 4记录用的笔、纸。

五、 实验报告内容

1叙述实验过程;

2提交实验的原始图像和结果图像。

六、 思考题

1.图像增强的目的是什么,有那些具体的方法? 2.直方图是什么概念?它反映了图像的什么信息?

实验四、图像压缩

一、

实验目的

1. 理解有损压缩和无损压缩的概念; 2. 理解图像压缩的主要原则和目的; 3. 了解几种常用的图像压缩编码方式。 4. 利用MATLAB程序进行图像压缩。

二、 实验原理

1.图像压缩原理

图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。

信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。

编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。

(1).冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。

(2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。

应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:

(1)无损压缩编码种类

哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。 (2)有损压缩编码种类

预测编码,DPCM,运动补偿;

频率域方法:正交变换编码(如DCT),子带编码; 空间域方法:统计分块编码;

模型方法:分形编码,模型基编码;

基于重要性:滤波,子采样,比特分配,向量量化; (3)混合编码。

有JBIG,H261,JPEG,MPEG等技术标准。 本实验主要利用MATLAB程序进行离散余弦变换(DCT)压缩和行程编码(Run Length Encoding, RLE)。

1) 离散余弦变换(DCT)图像压缩原理

10

离散余弦变换DCT在图像压缩中具有广泛的应用,它是JPEG、MPEG等数据压缩标准的重要数学基础。

和相同图像质量的其他常用文件格式(如GIF(可交换的图像文件格式),TIFF(标签图像文件格式),PCX(图形文件格式))相比,JPEG是目前静态图像中压缩比最高的。JPEG比其他几种压缩比要高得多,而图像质量都差不多(JPEG处理的图像只有真彩图和灰度图)。正是由于其高压缩比,使得JPEG被广泛地应用于多媒体和网络程序中。JPEG有几种模式,其中最常用的是基于DCT变换的顺序型模式,又称为基本系统(Baseline)。

用DCT压缩图像的过程为:

(1)首先将输入图像分解为8×8或16×16的块,然后对每个子块进行二维DCT 变换。

(2)将变换后得到的量化的DCT系数进行编码和传送,形成压缩后的图像格 式。

用DCT解压的过程为:

(1)对每个8×8或16×16块进行二维DCT反变换。 (2)将反变换的矩阵的块合成一个单一的图像。 余弦变换具有把高度相关数据能量集中的趋势,DCT变换后矩阵的能量集中在矩阵的左上角,右下的大多数的DCT系数值非常接近于0。对于通常的图像来说,舍弃这些接近于0的DCT的系数值,并不会对重构图像的画面质量带来显著的下降。所以,利用DCT变换进行图像压缩可以节约大量的存储空间。压缩应该在最合理地近似原图像的情况下使用最少的系数。使用系数的多少也决定了压缩比的大小。

在压缩过程的第2步中,可以合理地舍弃一些系数,从而得到压缩的目的。在压缩过程的第2步,还可以采用RLE和Huffman编码来进一步压缩。

2)行程编码(RLE)原理: 例如如下这幅 的二值图像,

如果采用行程编码可以按如下格式保存

11

搜索更多关于: 数字图像处理实验指导书 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

实验三、图像增强 一、 实验目的 1掌握灰度直方图的概念及其计算方法; 2熟练掌握直方图均衡化和直方图规定化的计算过程; 3熟练掌握空间域滤波中常用的平滑和锐化滤波器; 4掌握色彩直方图的概念和计算方法; 5利用MATLAB程序进行图像增强。 二、 实验原理 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法可以在课后自行练习。 直方图是多种空间域处理技术的基础。直方图操作能有效地用于图像增强。除了提供有用的图像统计资料外,直方图固有的信息在

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com