当前位置:首页 > 暖通空调 说明书
安徽建筑大学
5001000厚度为1.5mm,风管连接处法兰间垫3mm厚橡胶垫。
9.1.2水管
冷媒水管采用焊接钢管,管径>32为焊接,管径≤32为螺纹连接,空调水管的系统局部最高点应设自动排气阀,局部最低点设排水阀,供回水管干管坡度为0.003,冷凝水管坡度不得小于0.008,风机盘管接管坡度为0.01,坡向与水流方向一致.
9.2保温及防腐设计
9.2.1风管的保温及防腐
10.2.1.1、保温目的
1)、提高冷、热量的利用率,避免不必要的冷、热损失,保证空调的设计运行参数。
2)、当空调风道送冷风时,防止其表面温度可能低于或等于周围空气的露点温度,使表面结露,加速传热;同时可防止结露对风道的腐蚀。 10.2.1.2、保温层厚度的选择
本应该计算保温层的防止结露的最小厚度和经济厚度,然后取其较大值,本设计中风管的保温层厚度均按新规范附录J 表J.0.1-3空气调节风管最小保冷厚度(mm),本设计中选用保温层厚度为25mm。
9.2.2水管的保温及防腐
10.2.2.1保温及防腐目的
1)保温目的:一是为了减少管道的冷、热损失,二是防止冷管路表面结露。 2)防腐目的:防止金属表面的外部腐蚀并保护好涂料层。 10.2.2.2保温层厚度的选择
本设计中冷冻水管的保温层厚度均按新规范附录J 表J.0.1-1空气调节供冷管道最小保冷厚度(mm),冷凝水管保温层厚度按表J.0.1-4空气调节凝结水管防凝露厚度(mm)。
第 45 页
安徽建筑大学
参考文献
[1] 《采暖通风空调设计规范》(GB50019-2003)中国计划出版社2004 [2] 孙一坚 《简明空调设计手册》中国建筑工业出版社 2004
[3] 《民用建筑工程设计技术措施-暖通空调2动力》 中国建筑标准设计研究所 [4] 《公共建筑节能设计标准》GB50019-2003
[5] 马最良 姚杨《民用建筑空调设计》化学工业出版社2003 [6] 《建筑防火设计规范》GB50016-2006
[7] 陆亚俊 马最良 邹平华《暖通空调》中国建筑工业出版社 2003 [8] 《高层建筑防火设计规范》GB50045-95 [9] 《采暖通风空调制图标准》(GBJ114-88)
[10] 陆耀庆《实用供热空调设计手册》中国建筑工业出版社 2007
第 46 页
安徽建筑大学
致谢
在我这半学期的毕业设计生活中,老师和同学们给予了我很多的帮助,在此我向他们表示衷心的感谢!
首先,我要感谢我的指导老师宣玲娟老师对我的耐心指导和悉心的关怀。在平时的言谈中老师给我留下了深刻的印象,对我此次的设计给予了很多宝贵的指导意见,在这次毕业设计过程中,我学到了很多东西,这将对我以后的工作方向有很深的影响。
我喜欢这个专业,这将是我奋斗终生的事业。同时,我也要感谢建环专业所有的老师四年来对我们的悉心教导,以后我一定会好好学习 和工作,不辜负老师的期望。
第 47 页
安徽建筑大学
附录一
英文翻译(原文)
Thermodynamic perfectibility based analysis of
energy-efficiency standards for air conditioning products in China
1. Introduction
With an acceleration of urbanization and a rise in living standards in China, air conditioning products are widely used. Air conditioning products in China include room air conditioners, variable speed room air conditioners, unity air conditioners, multi-connected air conditioners (heat pump) units and chilled water air conditioning systems. China is the world’s largest producer and a big exporter of room air conditioners. And in recent years, there has been an increase in the use of water chillers in public buildings. According to incomplete statistics, the shipment of all types of water chillers in public buildings increased by 26.5% in 2007, compared with that in 2006 [1]. A preliminary estimate indicates that the energy consumption of all air conditioning products amounted for about 20% of the total building energy consumption [2]. Therefore, the air conditioning products play a crucial role in the energy saving and emission reduction of construction industry.
In order to reduce the energy consumption for the air conditioning products, China has enforced many energy efficiency standards for them including GB12021.3-2010 [3], GB21455-2008 [4], GB19576-2004 [5], GB19577-2004 [6], and GB 21454-2008 [7]. Among these standards there are different types of performance evaluation indexes for different types of air conditioning products, such as the energy efficiency ratio (EER), the coefficient of performance (COP), the seasonal energy efficiency ratio (SEER) and the integrated part load value (IPLV) and so on. These performance evaluation indexes have different test methods and calculation formula, which makes it difficult to evaluate the energy efficiency of different air conditioning products by using these evaluation indexes. To compare the energy efficiency of different air conditioning products, it is necessary to establish a public energy efficiency platform. This paper first presents that thermodynamic perfectibility is considered as performance evaluation indexes to evaluate different air conditioning products. Based on thermodynamic perfectibility, this article makes the compatible analysis of the energy efficiency standards for different air conditioning products. 2. Basic types of air conditioning systems
The thermodynamic power cycle of the air conditioning systems is one whose heat is supplied from a high-temperature source to the engine and its low temperature source is air passed through air conditioning systems. The high temperature source is outdoor air or water. According to the type of high temperature sources, air conditioning systems can be classified into two categories: air-source and
第 48 页
共分享92篇相关文档