云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 120文科高考导数练习题125

120文科高考导数练习题125

  • 62 次阅读
  • 3 次下载
  • 2025/5/5 1:01:05

(2)由已知,得若a=0,由f'(x)>0得若a≠0∵函数f(x)区间∴f'(x)≥0对

,显然不合题意 是增函数

恒成立,即不等式ax+2x﹣1≥0对

2

恒成立

即 恒成立 故

而当点评:

,函数,∴实数a的取值范围为a≥3.

本题考查了利用导数求函数极值以及函数单调性,属于常规题,必须掌握.

3

2

30.(2014?广西)函数f(x)=ax+3x+3x(a≠0). (Ⅰ)讨论f(x)的单调性;

(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.

考点: 利用导数研究函数的单调性;利用导数研究函数的极值. 专题: 导数的综合应用. 分析: (Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性; (Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.

解答: 解:(Ⅰ)函数f(x)=ax+3x+3x,∴f′(x)=3ax+6x+3,

2

令f′(x)=0,即3ax+6x+3=0,则△=36(1﹣a)

①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数; ②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=

,x2=

322

当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;

当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;

2

(Ⅱ)当a>0,x>0时,f′(x)=3ax+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数, 当a<0时,f(x)在区间(1,2)是增函数, 当且仅当:f′(1)≥0且f′(2)≥0,解得﹣a的取值范围[

)∪(0,+∞).

点评: 本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分

类讨论思想的应用.

非常实用优秀的教育电子word文档

搜索更多关于: 120文科高考导数练习题125 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(2)由已知,得若a=0,由f'(x)>0得若a≠0∵函数f(x)区间∴f'(x)≥0对,显然不合题意 是增函数 恒成立,即不等式ax+2x﹣1≥0对2 恒成立 即 恒成立 故 而当点评: ,函数,∴实数a的取值范围为a≥3. 本题考查了利用导数求函数极值以及函数单调性,属于常规题,必须掌握. 3230.(2014?广西)函数f(x)=ax+3x+3x(a≠0). (Ⅰ)讨论f(x)的单调性; (Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围. 考点: 利用导数研究函数的单调性;利用导数研究函数的极值. 专题: 导数的综合应用. 分析: (Ⅰ)求出函数的导数,通过导数为0,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com