当前位置:首页 > (全优试卷)衡水金卷普通高等学校招生全国统一考试模拟试卷分科综合卷理科数学(三)Word版含答案
全优试卷
?x2?4y?x2?4kx?4a?0, 由??y?kx?a则??16k?a?0,且x1?x2?4k,x1x2??4a. (1)若直线l过焦点F,则a?1,所以x1?x2?4k,x1x2??4. 由条件可知圆x??y?1??1的圆心为F?0,1?,半径为1,
22?2?又由抛物线定义可知AF?y1?1,BF?y2?1, 故可得AD?AF?1?y1,BE?BF?1?y2,
2所以AD?BE?y1y2??kx1?1??kx2?1??kx1x2?k?x1?x2??1??4k?4k?1?1. 22故AD?BE为定值1.
(2)假设存在点Q满足题意,设Q?0,y0?,
由x?4y?y?2121x,因此y'?x. 42若四边形APBQ为菱形,则AQ//BP,BQ//AP,
则kAQ?y1?y01y?y01?x2,kBQ?2?x1, x12x22则y1?y0?11x1x2,y2?y0?x1x2, 22则y1?y2,所以k?0,
此时直线AB的方程为y?kx?a?a,
全优试卷
所以A?2a,a,B2a,a. ????则抛物线在点A?2a,a处的切线为y??ax?a,①
??同理,抛物线在点B处的切线为y?联立①②,得P?0,?a?. ax?a,②
又线段AB的中点为R?0,a?,所以点Q?0,3a?. 即存在点Q?0,3a?,使得四边形APBQ为菱形,此时k?0. 21.解:(1)当a?2时,f?x??2?x?1??lnx?2x?4x?lnx?2. 22当x?1时,f?1??0,所以点P1,f?1?为P?1,0?,
??又f'?x??4x?4?1,因此k?f'?1??1. x因此所求切线方程为y?0?1??x?1??y?x?1. (2)当a??1时,g?x??2lnx?x?m,
2则g'?x???2?x?1??x?1?2?2x?. xx因为x??,e?,所以当g'?x??0时,x?1, e?1???且当1?x?1时,g'?x??0;当1?x?e时,g'?x??0; e故g?x?在x?1处取得极大值也即最大值g?1??m?1. 全优试卷
又g???m?2??1??e?122,g?e??m?2?e, e11?1?g?e??g???m?2?e2?m?2?2?4?e2?2?0,
ee?e??1????1???则g?e??g??,所以g?x?在区间?,e?上的最小值为g?e?,
ee?1?故g?x?在区间?,e?上有两个零点的条件是
?e??g?1??m?1?01??1?m?2?2, ??1?1e?g?e??m?2?e2?0???所以实数m的取值范围是?1,2???1??. e2?22.解:(1)设点P?x,y?,所以??x?2?cos?,(?为参数),
?y?sin?消去参数,得?x?2??y?1,
22即P点的轨迹C的方程为?x?2??y?1 22???l:?sin??直线???22??cos???sin??4?x?y?4, 4??所以直线l的直角坐标方程为x?y?4?0. (2)由(1),可知P点的轨迹C是圆心为?2,0?,半径为1的圆,
则圆心C到直线l的距离为d?2?0?42?2?r?1. 全优试卷
所以曲线C上的点到直线l的距离的最大值为2?1. 23.解:(1)由于f?x??5?x?1?x?2 ?2x?4,x??1???2,?1?x?2. ??2x?6,x?2?作图如下:
(2)由图像可知,
当?1?x?2,f?x?max?2,即得M?2. 12??3, ab假设存在正数a,b,使2a?b?2,且因为12?12??b???????a?? ab?ab??2?b2ab2a?)?2?2??4, 2ab2ab?2?(?2a?b?21??b2a??a????当且仅当?2时,取等号, 2ab???b?1??a,b?0所以1212?的最小值为4,与??3相矛盾, abab全优试卷
故不存在正数a,b,使2a?b?2,且12??3成立. ab
共分享92篇相关文档