云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 《最新6套汇总》江苏省苏州市2019-2020学年中考数学一模试卷

《最新6套汇总》江苏省苏州市2019-2020学年中考数学一模试卷

  • 62 次阅读
  • 3 次下载
  • 2025/6/4 10:13:03

的方式给出分析过程)

23.(1)计算:20﹣(﹣3)+(2)化简:(a+1)2﹣2(a+

2

1×(﹣4); 41) 224.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G. (1)求证:CE=CF;

(2)若AE=4cm,求AC的长度.(结果精确到0.1cm,参考数据:3≈1.732)

25.已知,平面直角坐标系中,关于x的二次函数y=x﹣2mx+m﹣2 (1)若此二次函数的图象过点A(﹣1,﹣2),求函数的表达式;

(2)若(x1,y1),(x2,y2)为此二次函数图象上两个不同点,且x1+x2=4时y1=y2,试求m的值; (3)点P(﹣2,y3)在抛物线上,求y3的最小值.

【参考答案】*** 一、选择题

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B B C C A D B A A 二、填空题 13.14

14.a(b+1)(b﹣1). 15.16.5 17.-(a+1) 18.x?x?4? 三、解答题

19.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5. 【解析】 【分析】

[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;

[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;

[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长. 【详解】

[问题背景】解:如图1,

D A 22

在△ABE和△ADG中,

?DG?BE?∵??B??ADG, ?AB?AD?∴△ABE≌△ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠EAF=

1∠BAD, 2∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF, ∴∠EAF=∠GAF, 在△AEF和△GAF中,

?AE?AG?∵??EAF??GAF, ?AF?AF?∴△AEF≌△AGF(SAS), ∴EF=FG,

∵FG=DG+DF=BE+FD, ∴EF=BE+FD;

故答案为:EF=BE+FD.

[探索延伸]解:结论EF=BE+DF仍然成立;

理由:如图2,延长FD到点G.使DG=BE.连结AG, 在△ABE和△ADG中,

?DG?BE?∵??B??ADG, ?AB?AD?∴△ABE≌△ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠EAF=

1∠BAD, 2∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF, ∴∠EAF=∠GAF, 在△AEF和△GAF中,

?AE?AG?∵??EAF??GAF, ?AF?AF?∴△AEF≌△AGF(SAS), ∴EF=FG,

∵FG=DG+DF=BE+FD, ∴EF=BE+FD;

[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G, 由【探索延伸】和题设知:DE=DG+BE, 设DG=x,则AD=6﹣x,DE=x+3,

在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,

∴(6﹣x)+3=(x+3), 解得x=2. ∴DE=2+3=5. 故答案是:5.

222

【点睛】

此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解. 20.(1) m=3,y=﹣x2+2x+2;(2)点E(3,﹣1). 【解析】 【分析】

(1)顶点为D(1,m),且tan∠COD=

1,则m=3,则抛物线的表达式为:y=a(x-1)2+3,即可求解; 32

(2)设:抛物线向上平移n个单位,则函数表达式为:y=-x+2x+2+n,求出OA、OB,即可求解. 【详解】

(1)顶点为D(1,m),且tan∠COD=

2

1,则m=3, 3则抛物线的表达式为:y=a(x﹣1)+3,即:a+3=2,解得:a=﹣1, 故抛物线的表达式为:y=﹣x+2x+2; (2)设:抛物线向上平移n个单位, 则函数表达式为:y=﹣x2+2x+2+n,

令y=0,则x=1+n?3,令x=0,则y=2+n, ∵OA=OB, ∴1+n?3=2+n,

解得:n=1或﹣2(舍去﹣2), 则点A的坐标为(3,0),

2

故点E(3,﹣1). 【点睛】

本题考查了抛物线与x轴的交点,二次函数图象与几何变换,待定系数法确定函数解析式以及解直角三角形.难度适中.利用数形结合与方程思想是解题的关键.

?x?121.(1)?;(2)-1?x?2

y?2?【解析】 【分析】

(1)运用加减消元法求解即可;

(2)首先求出每个不等式的解集,再取它们解集的公共部分即可得出不等式组的解集. 【详解】 (1)??2x?y?0①

?3x?y?5②①+②得,5x=5, 解得,x=1,

把x=1代入①得,y=2,

?x?1所以,方程组的解为:?;

y?2?(2)??3x?3?0①

?x-6?-2x②解不等式①得,x≥-1; 解不等式②得,x≤2;

故不等式组的解集为:-1?x?2. 【点睛】

本题考查了二元一次方程组的解法,二元一次方程组的解法有:代入消元法和加减消元法;同时还考查了解一元一次不等式组,求不等式组解集的口诀是:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 22.(1)【解析】 【分析】

(1)直接利用概率公式求解;

(2)画树状图展示所有12种等可能的结果数,找出恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数,然后根据概率公式求解. 【详解】

解:(1)抽到D上场参赛的概率=(2)画树状图为:

共有12种等可能的结果数,其中恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数为1,

11;(2) 4121; 4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

的方式给出分析过程) 23.(1)计算:20﹣(﹣3)+(2)化简:(a+1)2﹣2(a+21×(﹣4); 41) 224.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G. (1)求证:CE=CF; (2)若AE=4cm,求AC的长度.(结果精确到0.1cm,参考数据:3≈1.732) 25.已知,平面直角坐标系中,关于x的二次函数y=x﹣2mx+m﹣2 (1)若此二次函数的图象过点A(﹣1,﹣2),求函数的表达式; (2)若(x1,y1),(x2,y2)为此二次函数图象上两个不同点,且x1+x2=4时y1=y2,试求m的值; (3)点P(﹣2,y3)在抛物线上,求y3的最小值. 【参考答案】*** 一、选择题

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com