云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 数学物理方程课程

数学物理方程课程

  • 62 次阅读
  • 3 次下载
  • 2025/7/4 7:17:55

理论课程教学大纲

《数学物理方程》课程

教学大纲

课程代码:B0110040

课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部

一、课程的地位、目的和任务

课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。

课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。

二、课程与相关课程的联系与分工

学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

理论课程教学大纲

三、教学内容与基本要求

第一章 绪论 1.教学内容

第一节 偏微分方程的基本概念 第二节 弦振动方程及定解条件 第三节 热传导方程及定解条件 第四节 拉普拉斯方程及定解条件 第五节 二阶线性偏微分方程的分类 第六节 线性算子 2.重点难点

重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题

难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间

3.基本要求

(1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论

(4)掌握两个变量二阶线性偏微分方程分类方法及化简方法

(5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。

第二章 分离变量法

1.教学内容

第一节 有界弦的自由振动。 第二节 有界长杆的热传导问题。 第三节 二维拉普拉斯方程的边值问题。 第四节 非齐次方程得求解问题。

理论课程教学大纲

第五节 具有非齐次边界条件的问题。 第六节 本征值与本征函数。 2.重点难点

重点:分离变量的思路和方法

难点:将具有非齐次边界条件的定解问题化为具有齐次边界条件的定解问题 3.基本要求

(1)熟练掌握分离变量的思路和方法。 (2)会用分离变量求解弦振动问题。

(3)会用分离变量法求解有界区域的热传导问题,如拉普拉斯方程边值问题和梁振

动问题。

(4)了解有界区域的非齐次问题。会用本征函数展开法求解非齐次方程。 (5)了解定解问题的适定性:解的存在性、唯一性、稳定性。

第三章 特征线积分法

1.教学内容

第一节 达朗贝尔公式 第二节 传播波 2.重点难点 重点:达朗贝尔公式 难点:特征线法的应用 3.基本要求

(1)了解特征线积分法的原理和步骤。

(2)掌握柯西问题的求解过程并给出解的表达式—达朗贝尔公式。 (3)掌握特征线法的应用。

第四章 格林函数法

1.教学内容

第一节 格林公式及其应用 第二节 格林函数 第三节 格林函数的应用

理论课程教学大纲

第四节 试探法、泊松方程求解 2.重点难点

重点:求解偏微分方程有界区域的格林函数解法 难点:格林函数的应用 3.基本要求

(1)了解格林函数及其性质

(2)会用格林函数法求解拉普拉斯算子及亥姆霍兹算子的狄利克莱问题 (3)了解试探法

第五章 积分变换法

1.教学内容

第一节 傅里叶积分变换及性质 第二节 拉普拉斯积分变换及性质 第三节 卷积及其傅里叶变换 第四节 卷积及其拉普拉斯变换 2.重点难点

重点:傅里叶积分变换和拉普拉斯积分变换及用其求解无界区域的定解问题的方

法、步骤。

难点:用积分变换求解定解问题的一般步骤。 3.基本要求

(1)了解Fourier变换及Laplace变换的定义、存在条件及函数正、反变换的求法。 (2)重点掌握用Fourier变换法求解无界域中偏微分方程的定解问题和用Laplace

变换法求解常微分方程及方程组的初值问题 (3)了解半无限区域的定解问题。 (4)学会正确使用积分变换表。

第六章 贝塞尔函数、勒让德多项式

1.教学内容

第一节 贝塞尔方程及贝塞尔函数

搜索更多关于: 数学物理方程课程 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

理论课程教学大纲 《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com