云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020年九年级数学中考三轮冲刺:《相似综合训练》(含解析)

2020年九年级数学中考三轮冲刺:《相似综合训练》(含解析)

  • 62 次阅读
  • 3 次下载
  • 2025/5/6 9:57:27

∵AE=1,DC=AB=3, ∴BE=EF=DE=2,DF=4, ∴AD===

,BD==

=2

∴EC==

∵BE∥CD, ∴△BEP∽△DCP, ∴=

, ∴=, ∴PC=.

(3)∵△BDC沿BD翻折得到△BDQ,∠EDB=∠BDC, ∴点Q在DF上,且BQ⊥DF, ∴QE=DQ﹣DE=3﹣2=1, ∴AE=QE, ∴∠EAQ=∠EQA, ∵∠AEQ=∠BED, ∴△AEQ∽△BED,

∴△AEQ的周长:△BED的周长=AE:BE=1:2, ∵△BED的周长=2+2+2=4+2

∴△AEQ的周长=2+

9

5.如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.

(1)用含t的代数式分别表示点E和点F的坐标;

(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值; (3)当t=2时,求O′点在坐标.

解:(1)∵BA⊥x轴,CB⊥y轴,B(12,10), ∴AB=10,

由运动知,OD=t,OE=3t,BF=2t(0≤t≤4), ∴AF=10﹣2t,

∴E(3t,0),F(12,10﹣2t);

(2)由(1)知,OD=t,OE=3t,AF=10﹣2t, ∴AE=12﹣3t, ∵BA⊥x轴,

∴∠OAB=90°=∠AOC,

∵△ODE与以点A,E,F为顶点的三角形相似, ∴△DOE∽△EAF或△DOE∽△FAE, ①当△DOE∽△EAF时,,

∴,

∴t=

10

②当△DOE∽△FAE时,,

∴t=6(舍),

即:当△ODE与以点A,E,F为顶点的三角形相似时,t=秒;

(3)如图,

当t=2时,OD=2,OE=6,

在Rt△DOE中,根据勾股定理得,DE=2,

连接OO'交DE于G, ∴OO'=2OG,OO⊥DE, ∴S△DOE=OD?OE=DE?OG, ∴OG==

=,

∴OO'=2OG=,

∵∠AOC=90°,

∴∠HOO'+∠AOO'=90°, ∵OO'⊥DE,

∴∠OED+∠AOO'=90°, ∴∠HOO'=∠OED, 过点O'作O'H⊥y轴于H, ∴∠OHO'=90°=∠DOE, ∴△OHO'∽△EOD, ∴

, ∴,

∴OH=,O'H=,

∴O'(

).

11

6.如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作?DEFG. (1)连接DF,求DF的长度; (2)求?DEFG周长的最小值;

(3)当?DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:

QG的值.

解:(1)如图1所示: ∵四边形ABCD是矩形, ∠C=90°,AD=BC,AB=DC, ∵BF=FC,AD=2; ∴FC=1, ∵AB=3; ∴DC=3,

在Rt△DCF中,由勾股定理得,

12

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∵AE=1,DC=AB=3, ∴BE=EF=DE=2,DF=4, ∴AD===,BD===2, ∴EC===, ∵BE∥CD, ∴△BEP∽△DCP, ∴=, ∴=, ∴PC=. (3)∵△BDC沿BD翻折得到△BDQ,∠EDB=∠BDC, ∴点Q在DF上,且BQ⊥DF, ∴QE=DQ﹣DE=3﹣2=1, ∴AE=QE, ∴∠EAQ=∠EQA, ∵∠AEQ=∠BED, ∴△AEQ∽△BED, ∴△AEQ的周长:△BED的周长=AE:BE=1:2, ∵△BED的周长=2+2+2=4+2, ∴△AEQ的周长=2+. 9

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com