当前位置:首页 > 数学13级运筹学自测试卷2
答案:
maxZ?3x1?4x2?5x3?x1?2x2?x3?x4?10??2x1?x2?3x3?x5?5?x?0,j?1,2,?,5?j
13、求解下列线性规划
答案:
满意解X是AB线段上任意点。
15、(计算)将下述线性规划问题化为标准型
minz??x1?2x2?3x3?x1?x2?x3?7?x?x?x?3?123? ??3x1?x2?x3?5?x1,x2?0;x3为无约束?解:步骤:
(1) 用x4?x5替换x3,其中x4,x5≥0;
(2) 在第一个约束不等式≤号的左端加入松弛变量x6; (3) 在第二个约束不等式≥号的左端减去剩余变量x7; (4) 令z′= -z,把求min z 改为求max z′,即可得到该问题的标准型:
maxz?x1?2x2?3(x4?x5)?0x6?0x7?7?x1?x2?(x4?x5)?x6?x?x?(x?x)?x7?3?1245??5??3x1?x2?2(x4?x)??x1,x2,x4,x5,x6,x7?0'
16、某厂每月需甲产品1000件,每月生产率为5000件,每批装配费为500元,每月每件产品储存费为20元,求E.O.Q及最低费用。 解:
已知C3?500,C1?20,P?5000,R?1000,将各值代入式子得:
E.O.Q=
2C3RP2?500?1000?5000??250(件);
C1?P?R?20??5000?1000?C0?2C1C3R?P?R?2?20?500?1000??5000?1000???16000000?4000
P5000(元)
答:每次生产批量为250件,每次生产所需装配费及储存费最低为4000元。
17 用单纯形求解线性规划问题,完成下表。
cj CB 2 b 8 16 12 3 0 0 0 ?i XB x1 1 4 0 x2 2 0 4 x3 1 0 0 x4 0 1 0 x5 0 0 1 ?j 解: cj 2 3 0 0 0 CB 0 0 0 XB b x1 1 4 0 2 x2 2 0 4 3 0 x3 1 0 0 0 1 x4 0 1 0 0 0 x5 0 0 1 0 ?i 4 - 3 2 x3 x4 x5 8 16 12 ?j0 2 1 x3 1? 20 3 x4 x5 16 3 4 0 0 1 0 0 1 0 0 4 - 1 4Ci?Zj
2 0 0 0 3? 4 18 将下面的线性规划化为标准型
min z??3x1?4x2?2x3?5x4
?4x1?x2?2x3?x4??2??x1?x2?3x3?x4?14??2x?3x2?x3?2x4?2 ?1
x1?0,x2?0,x3?0,x4无非负限制 解 max z???z?3x1?4x9?2x3?5x7?5x8
??4x1?x9?2x3?x7?x8?2??x1?x9?3x3?x7?x8?x5?14???2x1?3x9?x3?2x7?2x8?x6?2
x1,x3,x5,x6,x7,x8,x9?0.
19.设k1,k2是凸集,证明k1?k2是凸集
证明:?x1,x2?k1?k2,
?x1?(1??)x2?k1 ?x1?(1??)x2?k2?x1?(1??)x2?k1?k2
?k1?k2是凸集
共分享92篇相关文档