当前位置:首页 > 2018年全国各地中考数学真题分类汇编(Word含答案)
A. (
B.
C.
D. ( 【答案】B 二、填空题 13.已知二次函数 【答案】增大
,当x>0时,y随x的增大而________(填“增大”或“减小”)
14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
【答案】4 三、解答题
15.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1 , P2 , P3的坐标,机器人能根据图2,绘制图形。若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式。请根据以下点的坐标,求出线段的长度或抛物线的函数关系式。
-4
①P1(4,0),P2(0,0),P3(6,6)。 ②P1(0,0),P2(4,0),P3(6,6)。 【答案】①∵P1(4,0),P2(0,0),4-0=4>0, ∴绘制线段P1P2 , P1P2=4.
②∵P1(0,0),P2(4,0),P3(6,6),0-0=0, ∴绘制抛物线,
设y=ax(x-4),把点(6,6)坐标代入得a= , ∴
,即
。
(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点
16.如图,抛物线
A在点B的左边),点C , D在抛物线上.设A(t , 0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G , H , 且直线GH平分矩形的面积时,求抛物线平移的距离. 【答案】(1)设抛物线的函数表达式为y=ax(x-10) ∵当t=2时,AD=4 ∴点D的坐标是(2,4) ∴4=a×2×(2-10),解得a= ∴抛物线的函数表达式为
(2)由抛物线的对称性得BE=OA=t ∴AB=10-2t 当x=t时,AD= ∴
矩
形
ABCD
的
周
长
=2
(
∵
<0
AB+AD
)
=
∴当t=1时,矩形ABCD的周长有最大值,最大值是多少 (3)如图,
当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4) ∴矩形ABCD对角线的交点P的坐标为(5,2)
当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。 当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分。 ∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分。 当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积。 ∵AB∥CD
∴线段OD平移后得到线段GH
∴线段OD的中点Q平移后的对应点是P 在△OBD中,PQ是中位线 ∴PQ= OB=4
所以,抛物线向右平移的距离是4个单位。
17.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x+20x,请根据要求解答下列问题:
2
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少? 【答案】(1)解:当y=15时, 15=﹣5x+20x, 解得,x1=1,x2=3,
2
共分享92篇相关文档