当前位置:首页 > 中考数学压轴题集锦
1、如图,抛物线y?x?2x?3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P点作y轴的平行线交 抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F, 使A、C、F、G这样的四个点为顶点的四边形是 平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由.
2、如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=23,直线y=3x?23经过点C,交y轴于点G。
(1)点C、D的坐标分别是C( ),D( ); (2)求顶点在直线y=3x?23上且经过点C、D的抛物
线的解析式;
(3)将(2)中的抛物线沿直线y=3x?23平移,平移后
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形? 若存在,请求出此时抛物线的解析式;若不存在,请说 明理由。
2yD C B xo OG A 第2题
3、如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q。
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断⊿BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是
等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能
否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由。
4、如图,P为正方形ABCD的对称中心,正方形ABCD的边长为10,tan?ABO?3。直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以2个单位每秒速度运动,运动时间为t。求: (1)分别写出A、C、D、P的坐标; (2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值
及S的最大值。
y D A P N O B 第4题图 C x M
5、如图,抛物线y?ax?bx?c(a?0)交x轴于A、B两点(A点在B点左侧),交y轴于点C,已知B(8,0),tan?ABC?21,△ABC的面积为8. 2(1)求抛物线的解析式;
(2)若动直线EF(EF∥x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间t秒。当t为何值时,
EF?OP的值最大,
EF?OP并求出最大值;
(3)在满足(2)的条件下,是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出t的值;若不存在,请说明理由。
y
C F E
B xP O A
6、如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒23cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒. (1)当点P在线段AO上运动时.
①请用含x的代数式表示OP的长度;
②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);
(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以
P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.
D
Q E CAOP
B
第6题
7、如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(4)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?
o8、如图1,在Rt△ABC中,?A?90,AB?AC,BC?42,另有一等腰梯形DEFG(第7题图)
(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.
(1)直接写出△AGF与△ABC的面积的比值;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF?G?(如图2). ①探究1:在运动过程中,四边形CEF?F能否是菱形?若能,请求出此时x的值;若不能,请说明理由.
②探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.
(D)B 图1 G A F C(E)
B G A G? F F? C
E
D
图2
9、如图,抛物线y?ax?bx(a?0)与反比例函数y?2k的图像相交于点A,B. 已知点xA的坐标为(1,4),点B(t,q)在第三象限内,且△AOB的面积为3(O为坐标原点). (1)求反比例函数的解析式
(2)用含t的代数式表示直线AB的解析式; (3)求抛物线的解析式;
(4)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,把△AOB绕点O逆时针旋转90o,请在图②中画出旋转后的三角形,并直接写出所有满足△EOC∽△AOB的点E的坐标.
10、已知如图,矩形OABC的长OA=3,宽OC=1,将△AOC沿AC翻折得△APC. (1)求∠PCB的度数; (2)若P,A两点在抛物线y=-
42
x+bx+c上,求c的值,并说明点C在此抛物线上; 3(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交
于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.
共分享92篇相关文档