云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 配套K12天津专用2018版高考数学总复习专题04三角函数与解三角形分项练习含解析理

配套K12天津专用2018版高考数学总复习专题04三角函数与解三角形分项练习含解析理

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 13:12:08

小学+初中+高中+努力=大学 弦定理得

?1?a2?b2?c2?2bccosA?62?42?2?6?4?????64,所以a?8.

?4?【考点定位】同角三角函数关系、三角形面积公式、余弦定理.

11. 【2015高考天津,理15】(本小题满分13分)已知函数f?x??sinx?sin?x?22????x?R ?,6?(I)求f(x)最小正周期; (II)求f(x)在区间[-pp,]上的最大值和最小值. 3431,f(x)min??. 42【答案】(I)?; (II) f(x)max??1?1?33ppf(?)??,f(?)??,f()?,所以f(x)在区间[-,]上的最大值为,最

346244434小值为?1. 2【考点定位】三角恒等变形、三角函数的图象与性质.

12. 【2016高考天津理数】在△ABC中,若AB=13,BC?3,?C?120,则AC?

(A)1 【答案】A 【解析】

试题分析:由余弦定理得13?9?AC2?3AC?AC?1,选A. 小学+初中+高中+努力=大学

(B)2

(C)3

(D)4

小学+初中+高中+努力=大学 【考点】余弦定理

【名师点睛】①利用正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.②利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的. 二.能力题组

1.【2006天津,理17】如图,在?ABC中,AC?2,BC?1,cosC?(1)求AB的值; (2)求sin?2A?C?的值.

3. 4

【答案】(1)AB=

(2)

2

2

2

【解析】解:(1)由余弦定理,AB=AC+BC-2AC?BC?cosC=4+1?2×2×1×=2. 那么,AB=

(2)解:由cosC=,且0<C<π,

得sinC=由正弦定理

解得sinA=

所以,cosA=

由倍角公式sin2A=2sinA?cosA=

且cos2A=1?2sinA=

2

故sin(2A+C)=sin2AcosC+cos2AsinC=

小学+初中+高中+努力=大学

小学+初中+高中+努力=大学 2.【2008天津,理17】已知cos?x?(Ⅰ)求sinx的值; (Ⅱ)求sin?2x?????2?????,x??,?. ??4?10?24??????的值. 3?【答案】(I)

424?73,(II)? 550【解析】解:(Ⅰ)因为x?????????3??,?,所以x???,?,于是

4?42??24?????72?? sin?x???1?cos2?x???4410????

3.【2009天津,理17】在△ABC中,BC?(1)求AB的值; (2)求sin(2A?5,AC=3,sinC=2sinA.

?4)的值.

2 10【答案】(Ⅰ)25;(Ⅱ)【解析】解:(1)在△ABC中,根据正弦定理,于是AB?ABBC?. sinCsinAsinCBC?2BC?25. sinAAB??AC2?BC225(2)在△ABC中,根据余弦定理,得cosA?. ?2AB?AC5小学+初中+高中+努力=大学

小学+初中+高中+努力=大学 于是sinA?1?cos2A?5. 5从而sin2A?2sinAcosA?所以

4322,cos2A?cosA?sinA?. 55sin(2A??4)?sin2Acos?4?cos2Asin?4?210.

2

4.【2010天津,理17】已知函数f(x)=23sinxcosx+2cosx-1(x∈R).

(1)求函数f(x)的最小正周期及在区间0,(2)若f(x0)=

?]上的最大值和最小值; 26??,x0∈,],求cos2x0的值. 5423?43 10【答案】(1) π. 最大值为2,最小值为-1. (2)

6?3,所以sin(2x0+)=. 565???2?7?,由x0∈,],得2x0+∈].

42636又因为f(x0)=从而cos(2x0+

??4)=-1?sin2(2x0?)??. 665??????3?43所以cos2x0=cos(2x0+6)-6]=cos(2x0+6)cos6+sin(2x0+6)sin6=10.

5.【2011天津,理15】已知函数f(x)?tan(2x?(Ⅰ)求f(x)的定义域与最小正周期;

?4),

(II)设???0,????4??,若f()?2cos2?,求?的大小.

?2小学+初中+高中+努力=大学

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

小学+初中+高中+努力=大学 弦定理得 ?1?a2?b2?c2?2bccosA?62?42?2?6?4?????64,所以a?8. ?4?【考点定位】同角三角函数关系、三角形面积公式、余弦定理. 11. 【2015高考天津,理15】(本小题满分13分)已知函数f?x??sinx?sin?x?22????x?R ?,6?(I)求f(x)最小正周期; (II)求f(x)在区间[-pp,]上的最大值和最小值. 3431,f(x)min??. 42【答案】(I)?; (II) f(x)max??1?1?33ppf(?)??,f(?)??,f()?,所以f(x)在区间[-,]上的最大值为,最346244434小值为?1. 2【考点定位】三角恒等变形、三角函数的图象与性质. 12. 【2016高考天津理数】在△ABC中,若AB

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com