云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2011-2017年新课标全国卷2理科数学试题分类汇编——7.函数与导数

2011-2017年新课标全国卷2理科数学试题分类汇编——7.函数与导数

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 1:00:39

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编

7.函数与导数

一、填空题

(2017·11)若x??2是函数f(x)?(x?ax?1)e2x?1`的极值点,则f(x)的极小值为( )

A.?1 B.?2e?3 C.5e?3 D.1 (2016·12)已知函数f(x)(x?R)满足f(?x)?2?f(x),若函数y?x?1与y?f(x)图像的交点为(x1,y1),x(x2,y2),…,(xm,ym),则?(xi?yi)? ( )

i?1mA.0 B.m C.2m D.4m

?1?log2(2?x)(x?1)(2015·5)设函数f(x)??x?1,则f(?2)?f(log212)?( )

(x?1)?2A.3

B.6

C.9

D.12

(2015·10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x. 将动点P到A,B两点距离之和表示为x的函数f(x),则f(x)的图像大致为 ( )

A.

B.

C.

D.

(2015·12)设函数f?(x)是奇函数f(x)(x?R)的导函数,f(?1)?0,当x>0时,xf?(x)?f(x)?0,则使得f (x) >0成立的x的取值范围是( ) A.(??,?1)U(0,1)

B.(?1,0)U(1,??) D.(0,1)U(1,??)

C.(??,?1)U(?1,0)

(2014·8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )

A.0

B.1

C.2

D.3

(2014·12)设函数f(x)?3sin?x,若存在f(x)的极值点x0满足x02?[f(x0)]2?m2,则m的取值范围

m是( )

A.(??,?6)U(6,+?) B.(??,?4)U(4,+?) C.(??,?2)U(2,+?) D.(??,?1)U(4,+?) (2013·8)设a?log36,b?log510,c?log714,则( )

A.c?b?a

B.b?c?a

C.a?c?b

D.a?b?c

(2013·10)已知函数f(x)?x3?ax2?bx?c,下列结论中错误的是( )

A.?x0?R,f(x0)?0

B.函数y?f(x)的图像是中心对称图形

C.若x0是f(x)的极小值点,则f(x)在区间(??,x0)单调递减 D.若x0是f(x)的极值点,则f?(x0)?0 (2012·10)已知函数f(x)?y1 o11,则y?f(x)的图像大致为( )

ln(x?1)?xy1 o1y1 o1y1 o1xxxx

A. B. C. D.

(2012·12)设点P在曲线y?A. 1?ln2

B.

1xe上,点Q在曲线y?ln(2x)上,则|PQ|的最小值为( ) 2C. 1?ln2

D.

2(1?ln2)

2(1?ln2)

(2011·2)下列函数中,既是偶函数又在单调递增的函数是( ) (0,+?)32?|x|A.y?x B.y?|x|?1 C.y??x?1 D.y?2

(2011·9)由曲线y?A.

x,直线y?x?2及y轴所围成的图形的面积为( )

B.4

C.

10 3

16 3 D.6

(2011·12)函数y?A.2

二、填空题

1的图像与函数y?2sin?x,(?2?x?4)的图像所有交点的横坐标之和等于( ) x?1B.4

C.6

D.8

(2014·15)已知偶函数f (x)在[0, +∞)单调递减,f (2)=0. 若f (x-1)>0,则x的取值范围是_________. (2016·16)若直线y = kx+b是曲线y = lnx+2的切线,也是曲线y = ln(x+1)的切线,则b = . 三、解答题

(2017·21)已知函数f(x)?ax?ax?xlnx,且f(x)?0.

(1)求a;

(2)证明:f(x)存在唯一的极大值点x0,且e

(2016·21)(Ⅰ)讨论函数f(x)??22?f(x0)?2?2.

x?2xxe 的单调性,并证明当x>0时,(x?2)e?x?2?0; x?2ex?ax?a(Ⅱ)证明:当a?[0,1)时,函数g(x)=(x?0)有最小值.设g (x)的最小值为h(a),求函数h(a)2x的值域.

14.(2015·21)设函数f(x)?emx?x2?mx.

(Ⅰ)证明:f (x)在(-∞,0)单调递减,在(0,+∞)单调递增;

(Ⅱ)若对于任意x1,,x2∈[-1,1],都有|f (x1)- f (x2)|≤ e-1,求m的取值范围.

15.(2014·21)已知函数f(x)?ex?e?x?2x. (Ⅰ)讨论f(x)的单调性;

(Ⅱ)设g(x)?f(2x)?4bf(x),当x?0时,g(x)?0,求b的最大值; (Ⅲ)已知1.4142?2?1.4143,估计ln2的近似值(精确到0.001).

16.(2013·21)已知函数f(x)?ex?ln(x?m).

(Ⅰ)设x?0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m?2时,证明f(x)?0.

17.(2012·21)已知函数f(x)?f?(1)e

18.(2011·21)已知函数f(x)?(Ⅰ)求a、b的值;

(Ⅱ)如果当x?0,且x?1时,f(x)?x?11?f(0)x?x2.

2(Ⅰ)求f(x)的解析式及单调区间; (Ⅱ)若f(x)?12x?ax?b,求(a?1)b的最大值. 2alnxb?,曲线y?f(x)在点(1,f(1))处的切线方程为x?2y?3?0. x?1xlnxk?,求k的取值范围. x?1x

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编

7.函数与导数(解析版)

2x?1(2017·11)A【解析】∵ f?x???x2?ax?1?ex?1 ∴ 导函数f??x????x??a?2?x?a?1??e,

∵ f???2??0,∴ a??1,∴ 导函数f??x???x2?x?2?ex?1,令f??x??0,∴ x1??2,x1?1, 当x变化时,f?x?,f??x?随变化情况如下表:

x ???,?2? ?2 0 ??2,1? 1 0 极小值 ?1,??? f??x? f?x? + - + 极大值 从上表可知:极小值为f?1???1.故选A

x?111?对称,∴?1?也关于?0,xxmmmm对于每一组对称点xi?xi'?0, yi?yi'=2,∴??xi?yi???xi??yi?0?2??m,故选B.

2i?1i?1i?1

x?111?对称,而y?1?对称,∴?1?也关于?0,12)B解析:由f?x??2?f?x?得f?x?关于?0,(2016·

xxmmmm对于每一组对称点xi?xi'?0, yi?yi'=2,∴??xi?yi???xi??yi?0?2??m,故选B.

2i?1i?1i?1

1?对称,而y?12)B解析:由f?x??2?f?x?得f?x?关于?0,(2016·

(2015·5)C解析:由已知得f(?2)?1?log24?3,又log212?1,所以f(log212)?2log212?1?2log26?6,故f(?2)?f(log212)?9.

(2015·10)B解析:由已知得,当点P在BC边上运动时,即0?x?当点P在CD边上运动时,即?x??时,PA?PB?tan2x?4?tanx;4?4??3?11,x?时,PA?PB?(?1)2?1?(?1)2?1,当x?时,

tanxtanx2243??x??时,PA?PB?4PA?PB?22;当点P在AD边上运动时,即

的运动过程可以看出,轨迹关于直线x?tan2x?4?tanx,从点P

对称,且f()?f(),且轨迹非线型,故选B. 242f(x)x?f(x)?f(x)(2015·12)A解析:记函数g(x)?,则g?(x)?,因为当x>0时,xf ′(x)-f(x)<0,故当x>0

xx2时,g′ (x)<0,所以g(x)在(0, +∞)单调递减;又因为函数f(x)(x∈R)是奇函数,故函数g(x)是偶函数,所以g(x)在(-∞, 0)单调递增,且g(-1)=g(1)=0.当00,则f(x)>0;当x<-1时,g(x)<0,则f(x)>0,综上所述,使得f(x)>0成立的x的取值范围是(-∞, -1)∪(0, 1),故选A.

???11?2,,且在点(0,0)处的切线的斜率为2,∴y'|x?0?a?即a?3.

x?10?1??x??x1?0得x?m(?k),k?Z, (2014·12)C解析:∵f?(x)?3cos,令f?(x)?3cosmmmm2(2014·8)D解析:∵y'?a?

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编 7.函数与导数 一、填空题 (2017·11)若x??2是函数f(x)?(x?ax?1)e2x?1`的极值点,则f(x)的极小值为( ) A.?1 B.?2e?3 C.5e?3 D.1 (2016·12)已知函数f(x)(x?R)满足f(?x)?2?f(x),若函数y?x?1与y?f(x)图像的交点为(x1,y1),x(x2,y2),…,(xm,ym),则?(xi?yi)? ( ) i?1mA.0 B.m C.2m D.4m ?1?log2(2?x)(x?1)(2015·5)设函数f(x)??x?1,则f(?2)?f(log212)?( ) (

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com