当前位置:首页 > 等比数列1习题(绝对物超所值)
48.在等比数列{an}中,a3?3a2?2,且5a4是12a3和2a5的等差中项,则{an}前5项和为 A.31 B.-31 C.31或-31 D.2
49.在等比数列?an?中,若a1?2,a2?a5?0,?an?的n项和为Sn,则S2015?S2016?( ) A.4032 B.2 C.?2 D.?4030
50.在等比数列{an}中,若数列{an}的前n项和为Sn,Sn?2n?1?2,数列{an}的前n项积为Tn,若Tm?1024,则m的值为( )
(A)4 (B)5 (C) 6 (D)7
51.正项等比数列?an?中,a2?4,a4?16,则数列?an?的前9项和等于 . 52.正项等比数列?an?中,a2?4,a4?16,则数列?an?的前9项和等于 . 53.已知数列{an}的前n项和为Sn,且a1?2,a2?8,a3?24,{an?1?2an}为等比数列. (Ⅰ)求证:{an2n}是等差数列; (Ⅱ)求1S的取值范围. n
54.已知等比数列{an}中,a2a10?9,则a5?a7( )
A.有最小值6 B.有最大值6 C.有最小值6或最大值?6 D.有最大值?6
55.已知数列?an?是等差数列,若a2?2,a4?4,a6?6构成等比数列,这数列?an?的公差d等于 ( A.1 B.?1 C.2 D.?2
56.已知等差数列{an}的前n项和为Sn,且满足a3?2,S5?a7. (Ⅰ)求数列{an}的通项公式an及Sn; (Ⅱ)若a4,a4?m,a4?n(m,n?N*)成等比数列,求n的最小值.
57.已知?2,a1,a2,?8成等差数列,?2,b1,b2,ba2?a13,?8成等比数列,则
b等于( ) 2A.
11114 B.2 C.?2 D.12或?2 58.已知数列?an?的前n项和Sn?an?5,则数列?an?为等比数列,a应满足: 。
试卷第9页,总18页
)59.已知数列?an?的首项a1?2,且an?2an?1-1(n?2),则an= 。 60.已知等比数列?an?,a1?a2?2,a3?a4?6,则a5?a6= . 61.等比数列{an}中,已知a3?2,a4?a2?2,则前5项和S5?( ) A.7?32 B.32?7 C.7?32 D.32?7 62.已知数列{an}满足:a1?1,an?1?2an?1. (1)求数列{an}的通项公式;
(2)若bn?anan?1,求数列{bn}的前n项和.
63.已知数列{an}的前n项和为Sn,a1?0,a1?a2?a3???an?n?an?1,n?N*. (Ⅰ) 求证:数列{an?1}是等比数列;
(Ⅱ) 设数列{bn}的前n项和为Tn,b1?1,点(Tn?1T在直线,n)xy1??上,若不等式n?1n2bb1b9?2???n?m?对于n?N*恒成立,求实数m的最大值. a1?1a2?1an?12?2an64.在等比数列{an}中,已知a3?4,a7?2a5?32?0,则a7? . 65.已知Sn为数列?an?的前n项和,Sn?nan?3n(n?1)(n?N),且a2?12.
*(1)求a1的值;
(2)求数列?an?的通项公式; (3)求证:
66.已知数列{an}是等比数列,首项a1?1,公比q?0,其前n项和为Sn,且S1?a1,S3?a3,S2?a2成等差数列.
(1)求数列{an}的通项公式;
1111?????. S1S2Sn3试卷第10页,总18页
(2)若数列{bn}满足an?1?()
12anbn,Tn为数列{bn}的前n项和,若Tn?m恒成立,求m的最大值.
67.设?an?是公差为d的等差数列,?bn?是公比为q(q?1)的等比数列.记cn?an?bn. (1)求证:数列?cn?1?cn?d?为等比数列; (2)已知数列?cn?的前4项分别为4,10,19,34. ① 求数列?an?和?bn?的通项公式;
② 是否存在元素均为正整数的集合A??n1,n2,?, nk?(k≥4,k?N?),使得数列cn1,cn2,?,cnk为等差数列?证明你的结论.
268.各项不为零的等差数列{an}中,2a3-a7+2a11=0,数列{bn}是等比数列,且b7=a7, 则b6b8=( ).
A.2 B.4 C.8 D.16
69.等比数列{an}的前n项和为Sn,S2n=4(a1+a3+ +a2n-1),a1a2a3=27,则a6=( ). A.27 B.8l C.243 D.729
70.设等差数列?an?的公差d不为0,a1?9d.若ak是a1与a2k的等比中项,则k? . 71.设数列{an}的前n项和为Sn
(1)若数列{an}是首项为1,公比为2的等比数列,求常数m,t的值,使Sn?man?t对一切大于零的自然数n都成立
(2)若数列{an}是首项为a1,公差d?0的等差数列,证明:存在常数m,t,b使得Sn?man?tan?b对一切大于零的自然数n都成立,且t?21 22?(3)若数列{an}满足Sn?man?tan?b,n?N,m、t、b(m?0)为常数,且Sn?0,证明:当t?1时,2数列{an}为等差数列
72.等比数列{an}的公比大于1,a5?a1?15,a4?a2?6,则a3? 73.已知数列{an}的各项均为正数,数列{bn},{cn}满足bn?an?22,cn?anan?1. an试卷第11页,总18页
(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;
(2)若数列{cn}为等比数列,且bn?1?bn,求证:数列{an}为等比数列.
74.已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=27.若a4=b3,b4-b3=m. (1)当m=18时,求数列{an}和{bn}的通项公式; (2)若数列{bn}是唯一的,求m的值.
S8S4?_____________. ?4,则75.设等比数列{an}的前n项和为Sn,若
S4S276.已知数列{an}的各项均为正数,数列{bn},{cn}满足bn?(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;
(2)若数列{cn}为等比数列,且bn?1?bn,求证:数列{an}为等比数列.
77.已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=27.若a4=b3,b4-b3=m. (1)当m=18时,求数列{an}和{bn}的通项公式; (2)若数列{bn}是唯一的,求m的值.
an?22,cn?anan?1. anS8S4? . ?4,则78.设等比数列{an}的前n项和为Sn,若
S4S279.设各项均为正数的数列?an?的前n项和为Sn,满足an+12=4Sn+4n?3,且a2,a5,a14恰好是等比数列?bn?的 前三项.
(1)求数列?an?、?bn?的通项公式;
*(2)记数列?bn?的前n项和为Tn,若对任意的n?N,(Tn?)k?3n?6恒成立,求实数k的取值范围.
32
80.已知各项均为正数的等比数列{an}中,a4与a14的等比中项为22,则2a7?a11的最小值为 . 81.设{an}是公比为q的等比数列.
试卷第12页,总18页
共分享92篇相关文档