当前位置:首页 > 鲁京津琼专用2020版高考数学大一轮复习第十章计数原理10.1分类加法计数原理与分步乘法计数原理教案含解析
§10.1 分类加法计数原理与分步乘法计数原理
最新考纲 通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.
1.分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法. 2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法. 3.分类加法计数原理和分步乘法计数原理的区别
分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事. 概念方法微思考
1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?
提示 如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理. 2.两种原理解题策略有哪些? 提示 ①分清要完成的事情是什么;
②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; ③有无特殊条件的限制; ④检验是否有重复或遗漏.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( × ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ )
(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.( √ )
1
(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mi(i=1,2,3,…,
n),那么完成这件事共有m1m2m3…mn种方法.( √ )
(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( √ ) 题组二 教材改编
2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( ) A.12B.8C.6D.4 答案 C
解析 分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.
3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( ) A.16B.13C.12D.10 答案 C
解析 将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种). 题组三 易错自纠
4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )
A.24B.18C.12D.6 答案 B
解析 分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.
5.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )
2
A.24种 C.36种 答案 D
解析 需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有4×3×2×2=48(种)着色方法.
6.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个. 答案 12
解析 当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.
B.30种 D.48种
题型一 分类加法计数原理
2
1.满足a,b∈{-1,0,1,2},且关于x的方程ax+2x+b=0有实数解的有序数对(a,b)的个数为( ) A.14B.13C.12D.10 答案 B
解析 方程ax+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对. ②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12个实数对,故a≠0时满足条件的实数对有12-3=9个,所以答案应为4+9=13.
2.如果一个三位正整数如“a1a2a3”满足a1
2
3
答案 A
解析 若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若
a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).
所以所有凸数有2+6+12+20+30+42+56+72=240(个).
3.(2016·全国Ⅲ)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )
A.18个B.16个C.14个D.12个 答案 C
解析 第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A4个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C4个,共2+8+4=14(个).
思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.
(3)分类时除了不能交叉重复外,还不能有遗漏. 题型二 分步乘法计数原理
3
2
例1(1)(2016·全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于
G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24B.18C.12D.9 答案 B
解析 从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.
(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法. 答案 120
解析 每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).
4
共分享92篇相关文档