当前位置:首页 > 全国各地中考数学试题分类汇编专题(第1期) 12 反比例函数Word版含解析
的图象上,则n的值是 3 .
【分析】过点D作DE⊥x轴过点C作CF⊥y轴,可证△ABO≌△DAE(AAS),△CBF≌△BAO(AAS),则可求D(5,1),C(4,5),确定函数解析式y=,C向左移动n个单位后为(4﹣n,5),进而求n的值;
【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴, ∵AB⊥AD, ∴∠BAO=∠DAE,
∵AB=AD,∠BOA=∠DEA, ∴△ABO≌△DAE(AAS), ∴AE=BO,DE=OA, 易求A(1,0),B(0,4), ∴D(5,1),
∵顶点D在反比例函数y=上, ∴k=5, ∴y=,
易证△CBF≌△BAO(AAS), ∴CF=4,BF=1, ∴C(4,5),
∵C向左移动n个单位后为(4﹣n,5), ∴5(4﹣n)=5, ∴n=3, 故答案为3;
【点评】本题考查反比例函数的图象及性质,正方形的性质;熟练掌握反比例函数解析式的求法,灵活运用正方形的性质是解题的关键.
8(2019?黑龙江哈尔滨?3分)点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是( ) A.(4,﹣1)
B.(﹣,1)
C.(﹣4,﹣1)
D.(,2)
【分析】将点(﹣1,4)代入y=,求出函数解析式即可解题; 【解答】解:将点(﹣1,4)代入y=, ∴k=﹣4, ∴y=
,
∴点(4,﹣1)在函数图象上, 故选:A.
【点评】本题考查反比例函数的图象及性质;熟练掌握待定系数法求函数解析式的方法是解题的关键.
9(2019?湖北十堰?3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )
A.﹣20
B.﹣16
C.﹣12
D.﹣8
【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的
横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.
【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示: 则△BDE≌△FDE,
∴BD=FD,BE=FE,∠DFE=∠DBE=90° 易证△ADF∽△GFE ∴
,
∵A(﹣8,0),B(﹣8,4),C(0,4), ∴AB=OC=EG=4,OA=BC=8, ∵D.E在反比例函数y=的图象上, ∴E(,4)、D(﹣8,∴OG=EC=
)
,AD=﹣,
∴BD=4+,BE=8+
∴,
∴AF=,
在Rt△ADF中,由勾股定理:AD2+AF2=DF2 即:(﹣)2+22=(4+)2 解得:k=﹣12 故选:C.
【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的
图象和性质等知识,发现BD与BE的比是1:2是解题的关键.
10 (2019?湖北天门?3分)反比例函数y=﹣,下列说法不正确的是( ) A.图象经过点(1,﹣3) C.图象关于直线y=x对称
B.图象位于第二、四象限 D.y随x的增大而增大
【分析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.
【解答】解:由点(1,﹣3)的坐标满足反比例函数y=﹣,故A是正确的; 由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;
由反比例函数的对称性,可知反比例函数y=﹣关于y=x对称是正确的,故C也是正确的,
由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的, 故选:D.
【点评】考查反比例函数的性质,当k<0时,在每个象限内y随x的增大而增大的性质、反比例函数的图象是轴对称图象,y=x和y=﹣x是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的基础;多方面、多角度考查反比例函数的图象和性质.
11 (2019?湖北武汉?3分)已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是( ) A.0
B.1
C.2
D.3
【分析】利用反比例函数的比例系数的几何意义、反比例函数的增减性、对称性分别回答即可.
【解答】解:过点A作AC⊥x轴,C为垂足,连接OA. ∵△ACO的面积为3, ∴|k|=6,
共分享92篇相关文档