当前位置:首页 > 全国各地中考数学试题分类汇编专题(第1期) 12 反比例函数Word版含解析
∴S△ABD=×2×3=3.
(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=﹣上的两点,且x1<x2<0, ∴y1<y2.
【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.
8 (2019?广西贵港?6分)如图,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点D(4,4)在反比例函数y=(x>0)的图象上,直线y=x+b经过点C,与y轴交于点E,连接AC,AE. (1)求k,b的值; (2)求△ACE的面积.
【分析】(1)由菱形的性质可知B(6,0),C(9,4),点D(4,4)代入反比例函数y=,求出k;将点C(9,4)代入y=x+b,求出b;
(2)求出直线y=x﹣2与x轴和y轴的交点,即可求△AEC的面积; 【解答】解:(1)由已知可得AD=5, ∵菱形ABCD,
∴B(6,0),C(9,4),
∵点D(4,4)在反比例函数y=(x>0)的图象上, ∴k=16,
将点C(9,4)代入y=x+b, ∴b=﹣2; (2)E(0,﹣2),
直线y=x﹣2与x轴交点为(3,0), ∴S△AEC=
2×(2+4)=6;
【点评】本题考查反比例函数、一次函数的图象及性质,菱形的性质;能够将借助菱形的边长和菱形边的平行求点的坐标是解题的关键.
9 (2019?湖北天门?10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.
(1)直接写出y关于t的函数解析式及t的取值范围: y=25t2﹣80t+100(0≤t≤4) ; (2)当PQ=3
时,求t的值;
(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.
【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围); (2)将PQ=3
代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;
(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD?cos∠OBC,DF=OD?sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.
【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.
当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6), ∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,
∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100, ∴y=25t2﹣80t+100(0≤t≤4). 故答案为:y=25t2﹣80t+100(0≤t≤4). (2)当PQ=3
时,25t2﹣80t+100=(3
)2,
整理,得:5t2﹣16t+11=0, 解得:t1=1,t2=
.
(3)经过点D的双曲线y=(k≠0)的k值不变.
连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示. ∵OC=6,BC=8, ∴OB=∵BQ∥OP, ∴△BDQ∽△ODP, ∴
=
=
=, =10.
∴OD=6. ∵CB∥OA, ∴∠DOF=∠OBC. 在Rt△OBC中,sin∠OBC=∴OF=OD?cos∠OBC=6×=∴点D的坐标为(
,
),
×
=
.
=
=,cos∠OBC=
=
=,
,
,DF=OD?sin∠OBC=6×=
∴经过点D的双曲线y=(k≠0)的k值为
【点评】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标. 10. ( 2019甘肃省兰州市)(本题7分)
如图, 在平面直角坐标系xoy中,反比例函数y=
时t
k(k≠0)的图象,过等边△BOCx的顶点B,OC=2,点A在反比例函数图象上,连接AC.AO. (1)求反比例函数y=
k(k≠0)的表达式; x (2)若四边形ACBO的面积是33,求点A的坐标.
【答案】(1)y=
13; (2)A(,23)
2x【考点】反比例函数解析式,不规则图形面积. 【考察能力】运算求解能力,推理论证能力. 【难度】中等.
【解析】 解:(1)∵ OC=2,
∴OM=1, BM=3, ∴点B(-1 ,-3 ),
共分享92篇相关文档