当前位置:首页 > 2017平谷中考数学一模试卷与答案
25.(1)证明:∵AB=AC,AD是⊙O的直径,∴AD⊥BC于F. ............................................ 1
∵DE是⊙O的切线,∴DE⊥AD于D.∴DE∥BC. ................................................... 2 (2)连结CD.
由AB=AC,∠BAC=2α,可知∠BAD=α. .................................................................... 3 由同弧所对的圆周角,可知∠BCD=∠BAD=α. 由AD⊥BC,∠BCD =α,DF=n, CE根据sinα=
DF,可知CD的长. ..................... 4 CDA由勾股定理,可知CF的长
由DE∥BC,可知∠CDE=∠BCD. 由AD是⊙O的直径,可知∠ACD=90°. 由∠CDE=∠BCD,∠ECD=∠CFD, 可知△CDF∽△DEC,可知
OFBDDFCF=,可求CE的长. ........................................ 5 CECD26.(1)x??2; .................................................................................................................... ....... 1
(2)该函数的图象如图所示;................................................................................................. 3
y4321O–2–1–1–212345x (3)-2; ....................................................................................................................... ....... 4 (4)该函数的其它性质:当?2?x?0时,y随x的增大而减小; ............................ 5
(答案不唯一,符合函数性质即可写出一条即可)
27.解:(1)令y=0,得x=1.
∴点A的坐标为(1,0). ........................................................................................ 1 ∵点A关于直线x=﹣1对称点为点C, ∴点C的坐标为(﹣3,0). ........................ 2 y5(2)令x=0,得y=3.
4∴点B的坐标为(0,3). B3∵抛物线经过点B, 2∴﹣3m=3,解得m=﹣1. ............................ 3 1CA∵抛物线经过点A, –4–3–2–1O12x–1∴m+n﹣3m=0,解得n=﹣2.
∴抛物线表达式为y??x?2x?3. ........... 4
2–2–3(3)由题意可知,a<0.
根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a=﹣3,............. 5 此时抛物线顶点在y轴上,不符合题意.
当抛物线经过(﹣3,0)时,开口最大,a=﹣1. ....................................................... 6
结合函数图像可知,a的取值范围为?3?a??1. .................................................. 7
9
28.解:(1)如图1,...................................................................................................................... 1
AEBDFC图1
(2)
A
AAGEBDFCBEDPFCEMBDNFC图2 图3
图4
想法1证明:如图2,过D作DG∥AB,交AC于G, ................................................. 2 ∵点D是BC边的中点, ∴DG=
1AB. 2∴△CDG是等边三角形. ∴∠EDB+∠EDG=120°. ∵∠FDG+∠EDG=120°,
∴∠EDB =∠FDG............................................................................................................. 3 ∵BD=DG,∠B=∠FGD=60°,
∴△BDE≌△GDF. ........................................................................................................... 4 ∴DE=DF. .......................................................................................................................... 5 想法2证明:如图3,连接AD, ∵点D是BC边的中点, ∴AD是△ABC的对称轴.
作点E关于线段AD的对称点P,点P在边AC上, ..................................................... 2 ∴△ADE≌△ADP.
∴DE=DP,∠AED=∠APD. ∵∠BAC+∠EDF=180°, ∴∠AED+∠AFD=180°. ∵∠APD+∠DPF=180°,
∴∠AFD=∠DPF. ............................................................................................................. 3 ∴DP=DF. .......................................................................................................................... 4 ∴DE=DF. .......................................................................................................................... 5 想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, ................. 2 ∵点D是BC边的中点, ∴AD平分∠BAC.
∵DM⊥AB于M,DN⊥AB于N, ∴DM=DN. ......................................................................................................................... 3 ∵∠A=60°,
10
∴∠MDE+∠EDN=120°. ∵∠FDN+∠EDN=120°, ∴∠MDE=∠FDN.
∴Rt△MDE≌Rt△NDF. ..................................................................................................... 4 ∴DE=DF. .......................................................................................................................... 5 (3)当点F在AC边上时,BE?CF?1AB; .......................................................... 6 21当点F在AC延长线上时,BE?CF?AB. ...................................................... 7
229.解:(1)120°; ......................................................................................................................... 1
(2)连结AC,在射线CB上截取CQ=CA,连结AQ. ............................................... 2
∵AB=23,BC=2,
∴AC=4. ................................... 3 ∴∠ACQ=60°.
∴△ACQ为等边三角形, 即∠AQC=60°. ..................... 4 ∵CQ=AC=4,
∴Q(3,﹣1). ................. 5
(3)
图1 图2
如图1,当点Q与点O重合时,∠EQF=60°, ∴Q(0,0). .......................................................................................................... 6 如图2,当FQ⊥x轴时,∠EQF=60°, ∴Q(2,0). .......................................................................................................... 7 ∴a的取值范围是0<a<2. ................................................................................... 8
11
共分享92篇相关文档