当前位置:首页 > 【附5套中考模拟试卷】内蒙古呼和浩特市2019-2020学年中考数学第二次押题试卷含解析
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
24.(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
25.(10分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数?的图象. (1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数?的值y随x的增大而增大;
②如图2,若过A点的直线交函数?的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标; (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范
围.
26.(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=
120(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Qt?4?2t?8,0?t?12 (单位:万元),Q与t之间满足如下关系:Q=??t?44,12?t?24?(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元) ①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
27.(12分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图. (1)测试不合格人数的中位数是 .
(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率; (3)在(2)的条件下补全条形统计图和扇形统计图.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】
分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案. =40°详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°, ∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.
点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键. 2.A 【解析】
∵?=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根. 故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当?>0时,一元二次方程有两个不相等的实数根;当?=0时,一元二次方程有两个相等的实数根;当?<0时,一元二次方程没有实数根. 3.D 【解析】 【分析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可. 【详解】
解:设白球个数为:x个,
∵摸到红色球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴
41? , 4?x4解得:x=12,
经检验x=12是原方程的根, 故白球的个数为12个. 故选:D. 【点睛】
本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键. 4.D 【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
A、,详解:在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于
1两2交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据
直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意; 故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键. 5.B 【解析】 【分析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】
∵这组数中无理数有?,2共2个, 21∴卡片上的数为无理数的概率是= .
63故选B. 【点睛】
本题考查了无理数的定义及概率的计算. 6.C 【解析】 【分析】
由DE∥BC可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果. 【详解】 ∵DE∥BC ∴△ADE∽△ABC ∴
ADAE1?? ABAC3∵AE?2cm ∴AC=6cm 故选C.
考点:相似三角形的判定和性质
点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.
共分享92篇相关文档