云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高等代数与解析几何之间的联系

高等代数与解析几何之间的联系

  • 62 次阅读
  • 3 次下载
  • 2025/6/21 9:12:34

高等代数与解析几何之间的关联性

数学0803班康若颖20081692

内容摘要:在我们的学习过程中,可以发现高等代数和解析几何中有很多相似之处。

确切的说是高等代数中的一些理论是从解析几何中发展和改进而来的。比如说通过解析几何中多元一次方程组的解法高等代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。也是通过行列式,多元方程组的解答更便捷、快速。又比如说欧式空间的提出。我们都知道几何空间中的向量以及他的一些性质。在高等代数中先后提出来线性空间、欧式空间。线性空间将向量做了推广,使向量抽象化。欧式空间在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。总体来说高等代数与解析几何是相互联系、相互促进的。可以更确切一点的说是解析几何是高等代数的基石,而高等代数是解析几何的推广和并使之抽象化。

关键词:行列式、正交变换、向量、线性方程组、二次型和二次曲线、二次曲面、欧

式空间

导言:从代数与几何的发展来看,高等代数与解析几何从来就是相互联系、相互促进

的。它们的关系可以归纳为“代数为几何提供研究方法,几何为代数提供直观背景”。通过对高等代数和解析几何的学习和研究中,我们可以看到解析几何和高等代数中有着紧密的联系。运用解析几何来分析高等代数更直观,同时,高等代数也是解析几何的一个发展、拓宽。比如说欧式空间。运用高等代数的解题方法来解答解析几何中的一些问题更加简便,快捷。比如说运用行列式的计算来解答多元方程组问题。

内容: 解析几何中以代数为工具,解析几何中的很多概念、方法都是应用线性代数

的知识来定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。从概念的内涵的外延来看,两门课之间存在着特殊与一般的关系,解析几何的一、二、三维空间是线性代数n维空间的特例,而线性空间的大量理论又是来源于一、二、三维几何空间的推广(抽象)。平面方程及平面间的位置关系与线性方程组的理论,二次曲线,二次曲面的化简与代数中的二次型理论,几何与代数中欧式空间的理论等等。 (一)线性代数中一些概念的几何直观解释:

1.关于行列式的几何背景

设?=(a1,a2,a3),β=(b1,b2,b3),γ=(c1,c2,c3);两个向量的向量积可以用行列式写为

ija2b2ka3 b3 ????a1b1它在几何上表示的是与α,β向量都垂直且成右手系的向量。 三个向量的混合积可以用行列式表示为图1 平行六面体

a1a2b2c2a3b3 c3(?,?,?)=(???)??=b1c1此行列式的几何解释是它的绝对值等于以它们3个向量为相邻棱所作的平行六面体的体积(如图1)。特别地,当(α,β,γ)=0时,由于平行六面体的体积为零,所以

a1b1c1a2b2c2a3b3?0??,?,?共面。c3图1 平行六面体

由此可得:过平面上两点(x1,y1), (x2,y2)的直线方程为

xx1x2y1y11?0 y21再推广到空间中有不在同一直线上的三点(xi,yi,zi)(i=1,2,3)的平面方程为

xx1x2x3yy1y2y3z1z11?0 z21z312. 关于正交变换的几何意义

在二次型化为标准型时,可以采用可逆变换或正交变换,但是由于可逆变换对应于仿射坐标系的变换,正交变换则对应于直角坐标系的变换,所以区别

x2y2z2???1通过可逆线性变换 比较大。例如: 149?x??1??x'???????2??y'?化成x'2?y'2?z'2?1,即椭球面变成了球面。 ?y????z????3??????z'?通过线性变换

?x??1??x'???????22?y???2??y'?,化成x'?y'?1,即椭球面变成了圆柱面。而正交变换?z????0??????z'?

保持向量长度和角度不变,因此几何图形不变。所以在讨论二次方程决定的图形时,必须用正交变换;如果只考虑它所属类型时,可以用可逆变换(当然包括正交变换)。

还应注意正交变换中:①当正交阵的行列式表示为1时,是旋转变换;②当正交阵的行列式为-1 时,为镜面反射变换。

3. 关于正交化的几何解释

线性无关的向量组可以由Schmidt正交化得到与其等价的正交组,它的几何解释为,如果有3个线性无关的向量?1,?2,?3则可以通过Schmidt正交化得到相应的3个正交向量?1,?2,?3。这里?1??1,?2??2??2 ,?3??3??3 ,其中γ2为α2在β1上的投影向量;γ3为α3在β1、β2所确定的平面上的垂直投影向量。

(二)向量组线性相关(无关)与几何中向量共面、共线之间的关系

若α,β,γ是三维空间的向量,则:α线性相关;α,β线性相关;α,β,γ线性相关分别对应于几何直观的α为零向量;α,β共线;α,β,γ共面。因此,一维空间的基是空间中任意一个非零向量;二维空间的基是空间中两个不共线向量;三维空

间的基是空间中3个不共面的向量组成的。

例1 在三维空间中有向量,OA =(a1,a2,a3),OB =(b1,b2,b3),OC =(c1,c2,c3),那么,A,B,C共线的充分必要条件是什么? 解:过A,B两点的直线方程为

?x?a1??b1?a1?t??y?a2??b2?a2?t,显然,当且仅当C点满足此方程时,A,B,C共线, ?z?a??b?a?t333?即存在t,使得OC =(1-t)OA +tOB ,于是,A,B,C共线,当且仅当OA ,OB ,OC 中某一向量可以由其余向量线性表示,而且表出系数之和为1。 (三)线性方程组与直线、平面的位置关系 空间直线、平面的位置关系为线性方程组的结构理论提供了直观的几何解

释,同样线性代数中的线性方程组的结构理论对深刻领会直线、平面的位置关系起到重要作用。

例2 已知平面上有三条不同的直线,它们的直线方程分别为

l1:ax?2by?3c?0l2:bx?2cy?3a?0l3:cx?2ay?3b?0,试证这3条直线交于一点的充分必要条件为a+b+c=0。

证明:必要性,设3条直线l1, l2, l3相交于一点,则线性方程组

?ax?2by??3c?a??bx?2cy??3a有唯一解,故系数矩阵A=?b??cx?2ay??3b?c???a2b?3c???与增广矩阵A??b2c?3a?

?c2a?3b????2b??2c? 2a??

的秩均为2,于是|A|=0由于

|A|?b2c?3a?6(a?b?c)[a2?b2?c2?ab?ac?bc]?3(a?b?c)[(a?b)2?(b?c)2?(c?a)2]c2a?3b??a2b?3c但是(a-b)2+(b-c)2+(c-a)2≠0,∴a+b+c=0充分性,由a+b+c=0,则从必要性的证明可知: |A|=0,故:秩(A)<3。由于于是,

??a2b13?2(ac?b2)??2[(a?b)2?b2]?0,故: b2c24,

。因此线性方程组有唯一解,即,3条直线l1, l2, l3相交于一

点。

(四)高等代数中解析几何的几种应用或原理

1. 行列式几何意义的应用

?a11x1?a12x2???a1nxn?b1?ax?ax???ax?b?2112222nn2??????????????an1x1?an2x2???annxn?bn下面先通过一个二维图形说明如何来确定这些仿射坐标.从图2可以看出,以β与α2为邻边组成的平行四边形有向面积与以x1α1与α2为邻边组成的平行四边形有向面积相等.这是因为两个平行四边形均是以α2为底,h为高.因此,易于看出它们中每一个的有向面积与以α1,α2为邻边的平行四边形有向面积之比均为x1.同理,可以看出x2与哪些平行四边形的有向面积之比相关.因为这些平行四边形的有向面积可以由行列式给出,所以由以上分析立刻可以“看出”如下结果有当

a≤0

时,显然

推广到一般n维空间的情况,即

h(x) >0;当

0< a <

时,由

搜索更多关于: 高等代数与解析几何之间的联系 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

高等代数与解析几何之间的关联性 数学0803班康若颖20081692 内容摘要:在我们的学习过程中,可以发现高等代数和解析几何中有很多相似之处。确切的说是高等代数中的一些理论是从解析几何中发展和改进而来的。比如说通过解析几何中多元一次方程组的解法高等代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。也是通过行列式,多元方程组的解答更便捷、快速。又比如说欧式空间的提出。我们都知道几何空间中的向量以及他的一些性质。在高等代数中先后提出来线性空间、欧式空间。线性空间将向量做了推广,使向量抽象化。欧式空间在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。总体来说高等代数与解析几何是相互联系、相互促进的。可以更确切一点的说是解析几何是高等代数的基石,而高等代数是解析几

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com