当前位置:首页 > 2020年广东省广州市天河区中考数学一模试卷(含答案解析)
个则找中间两个数的平均数.
7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可. 【解答】解:设邀请x个球队参加比赛, 根据题意可列方程为:x(x﹣1)=30. 故选:A.
【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.
8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【解答】解:∵在热气球C处测得地面B点的俯角分别为45°, ∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°, ∴AC=2×100=200米, ∴AD=
=100
米, =100(1+
)米,
∴AB=AD+BD=100+100故选:D.
【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2【解答】解:过点B′作B′D⊥OC ∵∠CPB=60°,CB′=OC=OA=4 ∴∠B′CD=30°,B′D=2 根据勾股定理得DC=2∴OD=4﹣2故选:C.
)
,故OD=4﹣2
,即B′点的坐标为(2,
).
,即B′点的坐标为(2,
【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.
10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH?BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.
【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D ∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90° ∴OECF是正方形
∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF ∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a ∵由切割线定理可得BF2=BH?BG ∴a2=BH(BH+a) ∴BH=
或BH=
(舍去)
∵OE∥DB,OE=OH ∴△OEH∽△BDH ∴
.
∴BH=BD,CD=BC+BD=a+故选:B.
【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题. 二.填空题(共6小题,满分18分,每小题3分)
11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.
【解答】解:﹣1的绝对值是1,倒数是﹣, 故答案为:1;﹣.
【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.
12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.
【解答】解:由题意得:m+1≥0,且m﹣1≠0, 解得:m≥﹣1,且m≠1, 故答案为:m≥﹣1,且m≠1.
【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.
13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°
【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC, ∵OA=OC, ∴∠A=∠OCA,
∴∠A=(180°﹣40°)=70°, 故答案为:70°.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.
【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0, 得m2﹣9=0, 解得:m=±3, ∵m﹣3≠0, ∴m=﹣3, 故答案是:﹣3.
【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;
如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案. 【解答】解:如图所示,
如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD, ∴OE⊥AB,
∵AB=8cm,CD=6cm, ∴AF=4cm,CE=3cm, ∴OA=OC=5cm, ∴OE=同理,OF=
=
=
=4cm,
=3cm,
∴EF=OE﹣OF=4﹣3=1cm;
如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F, ∵AB∥CD, ∴OE⊥AB,
共分享92篇相关文档