ÔÆÌ⺣ - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

µ±Ç°Î»ÖãºÊ×Ò³ > 2010-2019Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±àÊýѧרÌâ08ÊýÁÐ

2010-2019Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±àÊýѧרÌâ08ÊýÁÐ

  • 62 ´ÎÔĶÁ
  • 3 ´ÎÏÂÔØ
  • 2025/12/3 5:41:05

ºÍΪTn(n¡ÊN).ÒÑÖªb1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (1)ÇóSnºÍTn;

(2)ÈôSn+(T1+T2+¡­+Tn)=an+4bn,ÇóÕýÕûÊýnµÄÖµ.

(1)ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq.ÓÉb1=1,b3=b2+2,¿ÉµÃq-q-2=0.ÒòΪq>0,¿ÉµÃq=2,¹Êbn=2.Ëù

1-2??n

ÒÔ,Tn=1-2=2-1.

2

n-1

*

ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd.ÓÉb4=a3+a5,¿ÉµÃa1+3d=4.ÓÉb5=a4+2a6,¿ÉµÃ3a1+13d=16,´Ó¶øa1=1,d=1,¹Êan=n.ËùÒÔ,Sn=

??(??+1)

. 21

2

n

(2)ÓÉ(1),ÓÐT1+T2+¡­+Tn=(2+2+¡­+2ÓÉSn+(T1+T2+¡­+Tn)=an+4bn¿ÉµÃ,

2

2¡Á(1-2??)n+1

)-n=1-2-n=2-n-2.

??(??+1)n+1n+1

+2-n-2=n+2, 2ÕûÀíµÃn-3n-4=0,½âµÃn=-1(Éá),»òn=4. ËùÒÔ,nµÄֵΪ4.

11.(2018¡¤Ìì½ò¡¤ÀíT18)Éè{an}ÊǵȱÈÊýÁÐ,¹«±È´óÓÚ0,ÆäǰnÏîºÍΪSn(n¡ÊN),{bn}ÊǵȲîÊýÁÐ.ÒÑÖªa1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (1)Çó{an}ºÍ{bn}µÄͨÏʽ;

(2)ÉèÊýÁÐ{Sn}µÄǰnÏîºÍΪTn(n¡ÊN), ¢ÙÇóTn;

(??+??)??

¢ÚÖ¤Ã÷¡Æ????+2??

??=1(??+1)(??+2)

??

*

*

=

2??+2*

-2(n¡ÊN). ??+22

n-1

(1)½âÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq.ÓÉa1=1,a3=a2+2,¿ÉµÃq-q-2=0.ÒòΪq>0,¿ÉµÃq=2,¹Êan=2.

ÉèµÈ²îÊýÁÐ{bn}µÄ¹«²îΪd.ÓÉa4=b3+b5,¿ÉµÃb1+3d=4.ÓÉa5=b4+2b6,¿ÉµÃ3b1+13d=16,´Ó¶øb1=1,d=1,¹Êbn=n. ËùÒÔ,ÊýÁÐ{an}µÄͨÏʽΪan=2,ÊýÁÐ{bn}µÄͨÏʽΪbn=n. (2)¢Ù½âÓÉ(1),ÓÐ

??

k

n-1

1-2??nSn==2-1, 1-2??

k

¹ÊTn=¡Æ(2-1)=¡Æ2-n=

??=1

??=1

2¡Á(1-2??)n+1

-n=2-n-2. 1-2(????+????+2)????¢ÚÖ¤Ã÷ÒòΪ(??+1

)(??+2)24232??+22??+1(4-3)+¡­+(??+2-??+1)

==

(2??+1-??-2+??+2)??(??+1)(??+2)2??+2

-2. ??+2=

??¡¤2??+1(??+1)(??+2)

=

2??+2??+2??

(????+????+2)????2??+1

???+1,ËùÒÔ,¡Æ(??+1

)(??+2)??=1

=

2322

(3-2)+

12.(2018¡¤È«¹ú2¡¤ÀíT17ÎÄT17)¼ÇSnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ,ÒÑÖªa1=-7,S3=-15. (1)Çó{an}µÄͨÏʽ; (2)ÇóSn,²¢ÇóSnµÄ×îСֵ.

21

(1)Éè{an}µÄ¹«²îΪd,ÓÉÌâÒâµÃ3a1+3d=-15. ÓÉa1=-7µÃd=2.

ËùÒÔ{an}µÄͨÏʽΪan=2n-9. (2)ÓÉ(1)µÃSn=n-8n=(n-4)-16.

ËùÒÔµ±n=4ʱ,SnÈ¡µÃ×îСֵ,×îСֵΪ-16.

13.(2018¡¤È«¹ú1¡¤ÎÄT17)ÒÑÖªÊýÁÐ{an}Âú×ãa1=1,nan+1=2(n+1)an.Éèbn=??. (1)Çób1,b2,b3;

(2)ÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ±ÈÊýÁÐ,²¢ËµÃ÷ÀíÓÉ; (3)Çó{an}µÄͨÏʽ. (1)ÓÉÌõ¼þ¿ÉµÃan+1=

2(??+1)

an. ??

????2

2

½«n=1´úÈëµÃ,a2=4a1,¶øa1=1,ËùÒÔa2=4. ½«n=2´úÈëµÃ,a3=3a2,ËùÒÔa3=12. ´Ó¶øb1=1,b2=2,b3=4.

(2){bn}ÊÇÊ×ÏîΪ1,¹«±ÈΪ2µÄµÈ±ÈÊýÁÐ.

??+1

ÓÉÌõ¼þ¿ÉµÃ??+1=????,¼´bn+1=2bn,ÓÖb1=1,ËùÒÔ{bn}ÊÇÊ×ÏîΪ1,¹«±ÈΪ2µÄµÈ±ÈÊýÁÐ. ??(3)ÓÉ(2)¿ÉµÃ??=2,ËùÒÔan=n¡¤2.

n-1

n-1

??2??

??

14.(2018¡¤È«¹ú3¡¤ÀíT17ÎÄT17)µÈ±ÈÊýÁÐ{an}ÖÐ,a1=1,a5=4a3. (1)Çó{an}µÄͨÏʽ;

(2)¼ÇSnΪ{an}µÄǰnÏîºÍ,ÈôSm=63,Çóm. (1)Éè{an}µÄ¹«±ÈΪq,ÓÉÌâÉèµÃan=q. ÓÉÒÑÖªµÃq=4q,½âµÃq=0(ÉáÈ¥),q=-2»òq=2. ¹Êan=(-2)»òan=2. (2)Èôan=(-2),Ôò

mn-1n-1

n-1

4

2

n-1

1-(-2)

Sn=3??

.

ÓÉSm=63µÃ(-2)=-188,´Ë·½³ÌûÓÐÕýÕûÊý½â. Èôan=2,ÔòSn=2-1.ÓÉSm=63µÃ2=64,½âµÃm=6. ×ÛÉÏ,m=6.

15.(2017¡¤È«¹ú1¡¤ÎÄT17)ÉèSnΪµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍ,ÒÑÖªS2=2,S3=-6. (1)Çó{an}µÄͨÏʽ;

22

n-1

n

m

(2)ÇóSn,²¢ÅжÏSn+1,Sn,Sn+2ÊÇ·ñ³ÉµÈ²îÊýÁÐ. (1)Éè{an}µÄ¹«±ÈΪq.

??(1+??)=2,

ÓÉÌâÉè¿ÉµÃ{1

??1(1+??+??2)=-6.½âµÃq=-2,a1=-2.

¹Ê{an}µÄͨÏʽΪan=(-2). (2)ÓÉ(1)¿ÉµÃÓÉÓÚ

??+1

??1(1-????)2n2

Sn=1-??=-3+(-1)3. n

??+3??+2??+1

4-22??2n2

Sn+2+Sn+1=-3+(-1)=2[-3+(-1)3]=2Sn,¹Ê3Sn+1,Sn,Sn+2³ÉµÈ²îÊýÁÐ.

16.(2017¡¤È«¹ú2¡¤ÎÄT17)ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn,µÈ±ÈÊýÁÐ{bn}µÄǰnÏîºÍΪTn,a1=-1,b1=1,a2+b2=2.

(1)Èôa3+b3=5,Çó{bn}µÄͨÏʽ; (2)ÈôT3=21,ÇóS3.

Éè{an}µÄ¹«²îΪd,{bn}µÄ¹«±ÈΪq, Ôòan=-1+(n-1)d,bn=q. ÓÉa2+b2=2µÃd+q=3.¢Ù (1)ÓÉa3+b3=5,µÃ2d+q=6.¢Ú

??=3,??=1,ÁªÁ¢¢ÙºÍ¢Ú½âµÃ{(ÉáÈ¥),{

??=0??=2.Òò´Ë{bn}µÄͨÏʽΪbn=2. (2)ÓÉb1=1,T3=21µÃq+q-20=0, ½âµÃq=-5»òq=4.

µ±q=-5ʱ,ÓÉ¢ÙµÃd=8,ÔòS3=21. µ±q=4ʱ,ÓÉ¢ÙµÃd=-1,ÔòS3=-6.

17.(2017¡¤È«¹ú3¡¤ÎÄT17)ÉèÊýÁÐ{an}Âú×ãa1+3a2+¡­+(2n-1)an=2n. (1)Çó{an}µÄͨÏʽ;

??

(2)ÇóÊýÁÐ{2??+1}µÄǰnÏîºÍ.

2

n-1

2n-1

??

(1)ÒòΪa1+3a2+¡­+(2n-1)an=2n,¹Êµ±n¡Ý2ʱ,a1+3a2+¡­+(2n-3)an-1=2(n-1). Á½Ê½Ïà¼õµÃ(2n-1)an=2.ËùÒÔan=2??-1(n¡Ý2). ÓÖÓÉÌâÉè¿ÉµÃa1=2,

2

23

´Ó¶ø{an}µÄͨÏʽΪan=2??-1.

??

(2)¼Ç{2??+1}µÄǰnÏîºÍΪSn.

??ÓÉ(1)Öª2??+1=(2??+1)(2??-1)=2??-1?2??+1. 2

??

??211

ÔòSn=1?3+3?5+¡­+2??-1?2??+1=2??+1. 18.(2017¡¤Ìì½ò¡¤ÀíT18)ÒÑÖª{an}ΪµÈ²îÊýÁÐ,ǰnÏîºÍΪSn(n¡ÊN),{bn}ÊÇÊ×ÏîΪ2µÄµÈ±ÈÊýÁÐ,ÇÒ¹«±È´óÓÚ0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)Çó{an}ºÍ{bn}µÄͨÏʽ;

(2)ÇóÊýÁÐ{a2nb2n-1}µÄǰnÏîºÍ(n¡ÊN).

(1)ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd,µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq.ÓÉÒÑÖªb2+b3=12,µÃb1(q+q)=12, ¶øb1=2,ËùÒÔq+q-6=0.ÓÖÒòΪq>0,½âµÃq=2. ËùÒÔ,bn=2.ÓÉb3=a4-2a1,¿ÉµÃ3d-a1=8.¢Ù ÓÉS11=11b4,¿ÉµÃa1+5d=16,¢Ú

ÁªÁ¢¢Ù¢Ú,½âµÃa1=1,d=3,Óɴ˿ɵÃan=3n-2.

ËùÒÔ,ÊýÁÐ{an}µÄͨÏʽΪan=3n-2,ÊýÁÐ{bn}µÄͨÏʽΪbn=2.

(2)ÉèÊýÁÐ{a2nb2n-1}µÄǰnÏîºÍΪTn,ÓÉa2n=6n-2,b2n-1=2¡Á4,ÓÐa2nb2n-1=(3n-1)¡Á4, ¹ÊTn=2¡Á4+5¡Á4+8¡Á4+¡­+(3n-1)¡Á4,

4Tn=2¡Á4+5¡Á4+8¡Á4+¡­+(3n-4)¡Á4+(3n-1)¡Á4, ÉÏÊöÁ½Ê½Ïà¼õ,µÃ-3Tn=2¡Á4+3¡Á4+3¡Á4+¡­+3¡Á4-(3n-1)¡Á4=-(3n-2)¡Á4-8.µÃTn=

n+1

2

3

n

n+1

2

3

4

n

n+1

2

3

n

n-1

n

n

n

2

2

*

*

1111112??

12¡Á(1-4??)n+1

=-4-(3n-1)¡Á4

1-43??-2n+18

¡Á4+. 33

3??-2n+18

¡Á4+. 33ËùÒÔ,ÊýÁÐ{a2nb2n-1}µÄǰnÏîºÍΪ

19.(2017¡¤É½¶«¡¤ÀíT19)ÒÑÖª{xn}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ,ÇÒx1+x2=3,x3-x2=2. (1)ÇóÊýÁÐ{xn}µÄͨÏʽ;

(2)Èçͼ,ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÒÀ´ÎÁ¬½ÓµãP1(x1,1),P2(x2,2)¡­Pn+1(xn+1,n+1)µÃµ½ÕÛÏßP1P2¡­Pn+1,ÇóÓɸÃÕÛÏßÓëÖ±Ïßy=0,x=x1,x=xn+1ËùΧ³ÉµÄÇøÓòµÄÃæ»ýTn.

24

  • ÊÕ²Ø
  • Î¥¹æ¾Ù±¨
  • °æÈ¨ÈÏÁì
ÏÂÔØÎĵµ10.00 Ôª ¼ÓÈëVIPÃâ·ÑÏÂÔØ
ÍÆ¼öÏÂÔØ
±¾ÎÄ×÷Õߣº...

¹²·ÖÏí92ƪÏà¹ØÎĵµ

Îĵµ¼ò½é£º

ºÍΪTn(n¡ÊN).ÒÑÖªb1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (1)ÇóSnºÍTn; (2)ÈôSn+(T1+T2+¡­+Tn)=an+4bn,ÇóÕýÕûÊýnµÄÖµ. (1)ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq.ÓÉb1=1,b3=b2+2,¿ÉµÃq-q-2=0.ÒòΪq>0,¿ÉµÃq=2,¹Êbn=2.Ëù1-2??nÒÔ,Tn=1-2=2-1. 2n-1*ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd.ÓÉb4=a3+a5,¿ÉµÃa1+3d=4.ÓÉb5=a4+2a6,¿ÉµÃ3a1+13d=16,´Ó¶øa1=1,d=1,¹Êan=n.ËùÒÔ,Sn=??(??+1). 212n(2)ÓÉ(1),ÓÐT1+T2+¡­+Tn=(2+2+¡­+2ÓÉSn+

¡Á ÓοͿì½ÝÏÂÔØÍ¨µÀ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩
µ¥Æª¸¶·ÑÏÂÔØ
ÏÞÊ±ÌØ¼Û£º10 Ôª/·Ý Ô­¼Û:20Ôª
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£ºfanwen365 QQ£º370150219
Copyright © ÔÆÌ⺣ All Rights Reserved. ËÕICP±¸16052595ºÅ-3 ÍøÕ¾µØÍ¼ ¿Í·þQQ£º370150219 ÓÊÏ䣺370150219@qq.com