当前位置:首页 > 移动通信技术论文
更好的LTE版本完善。随着更多的先进技术融入到LTE/LTE-Advanced技术标准中,给蜂窝移动通信带来了强大的生命力和发展潜力。 3.2 WLAN
无线局域网(WLAN)是当今全球应用最为普及的宽带无线接入技术之一,拥有良好的产业和用户基础,巨大的市场需求推动了WLAN技术的发展,大量的非授权频段也给WLAN技术提供了巨大的发展空间。在强大的市场需求推动下,WLAN与移动通信系统逐渐走向全方位的融合,在终端方面,WLAN已成为智能手机的必备功能,智能手机支持手机流量和WLAN之间的自动切换。在网络方面,越来越多地厂商开始提供完整地“蜂窝+WLAN”解决方案,实现了WLAN和蜂窝资源共享,不仅方便网络部署、运营、管理和维护、也可节约大量开支。由此可见,在移动数据业务快速增长的有力推动下,WLAN与移动通信走向广泛深入地融合已是未来的趋势,也许会在5G发展中出现根本性的变化。
目前,IEEE已经启动了下一代WLAN标准“High-efficiency WLAN”的研究,将进一步提升运营商业务能力,推动WLAN技术与蜂窝网络的融合。 3.3革命性技术
此外,我们还应当特别关注可能出现的革命性5G技术。从蜂窝移动通信的演进路线来看,每一代演进都有革命性技术出现,从2G的GSM到3G的CDMA,再到4G的OFDM,那么,5G是否会出现新一代的革命性技术,而这种革命性技术是否需要与LTE演进采用不同的技术路线,进而产生新一代的空中接口技术,将成为我们重点关注的内容。
4、5G关键性技术
为提升其业务支撑能力, 5G 在无线传输技术和网络技术方面将有新突破。在无线传输技术方面, 将引入能进一步挖掘频谱效率提升潜力的技术,如先进的多址接入技术、多天线技术、编码调制技术、新的波形设计技术等; 在无线网络方面, 将采用更灵活、更智能的网络架构和组网技术, 如采用控制与转发分离的软件定义无线网络的架构、统一的自组织网络 (SON)、异构超密集部署等。5G移动通信标志性的关键技术主要体现在超高效能的无线传输技术和高密度无线网络 (high den-sity wireless network)技术。 其中基于大规模
MIMO 的无线传输技术将有可能使频谱效率和功率效率在4G的基础上再提升一个量级, 该项技术走向实用化的主要瓶颈问题是高维度信道建模与估计以及复杂度控制。 全双工 (full duplex) 技术将可能开辟新一代移动通信频谱利用的新格局。 超密集网络(ultra dense network, UDN)
已引起业界的广泛关注, 网络协同与干扰管理将是提升高密度无线网络容量的核心关键问题。
体系结构变革将是新一代无线移动通信系统发展的主要方向. 现有的扁平化 SAE/LTE (systemarchitecture evolution/long term evolution) 体系结构促进了移动通信系统与互联网的高度融合, 高密度、智能化、可编程则代表了未来移动通信演进的进一步发展趋势, 而内容分发网络 (CDN) 向核心网络的边缘部署, 可有效减少网络访问路由的负荷, 并显著改善移动互联网用户的业务体验。
1)超密集组网: 未来网络将进一步使现有的小区结构微型化、分布化, 并通过小区间的相互协作,化干扰信号为有用信号, 从而解决小区微型化和分布化所带来的干扰问题, 并最大程度地提高整个网络的系统容量。
2)智能化: 未来网络将在已有 SON 技术的基础上, 具备更为广泛的感知能力和更为强大的自优化能力, 通过感知网络环境及用户业务需求, 在异构环境下为用户提供最佳的服务体验.
3)可编程: 未来网络将具备软件可定义 (SDN) 能力, 数据平面与控制平面将进一步分离, 集中控制、分布控制或两者的相互结合, 将是网络演进发展中需要解决的技术路线问题。 基站与路由交换等基础设施具备可编程与灵活扩展能力, 以统一融合的平台适应各种复杂的及不同规模的应用场景。
4)内容分发边缘化部署: 移动终端访问的内容虽然呈海量化趋势, 但大部分集中在一些热点内容和大型门户网站, 在未来的 5G 网络中采用 CDN 技术将是提高网络资源利用率的重要潜在手段。 4.1无线传输技术 (1) 大规模MOMI技术
多天线技术作为提高系统频谱效率和传输可靠性的有效手段, 已经应用于多种无线通信系统, 如3G系统、LTE、LTE-A、WLAN 等。根据信息论, 天线
数量越多, 频谱效率和可靠性提升越明显。尤其是, 当发射天线和接收天线数量很大时, MIMO 信道容量将随收发天线数中的最小值近似线性增长。因此, 采用大数量的天线, 为大幅度提高系统的容量提供了一个有效的途径。由于多天线所占空间、实现复杂度等技术条件的限制, 目前的无线通信系统中, 收发端配置的天线数量都不多, 比如在 LTE 系统中最多采用了 4 根天线, LTE-A 系统中最多采用了 8 根天线但由于其巨大的容量和可靠性增益, 针对大天线数的 MIMO 系统相关技术的研究吸引了研究人员的关注, 如单个小区情况下, 基站配有大大超过移动台天线数量的天线的多用户 MIMO 系统的研究等进而, 2010 年, 贝尔实验室的Marzetta研究了多小区、TDD (time division duplexing) 情况下, 各基站配置无限数量天线的极端情况的多用户 MIMO 技术, 提出了大规模 MIMO (large scale MIMO, 或者称 Massive MIMO) 的概念发现了一些与单小区、有限数量天线时的不同特征。之后, 众多的研究人员在此基础上研究了基站配置有限天线数量的情况.在大规模 MIMO 中, 基站配置数量非常大 (通常几十到几百根, 是现有系统天线数量的 1~2 个数量级以上) 的天线, 在同一个时频资源上同时服务若干个用户。在天线的配置方式上, 这些天线可以是集中地配置在一个基站上, 形成集中式的大规模 MIMO, 也可以是分布式地配置在多个节点上, 形成分布式的大规模 MIMO。值得一提的是, 我国学者在分布式 MIMO 的研究一直走在国际的前列。
大规模 MIMO 带来的好处主要体现在以下几个方面: 第一, 大规模 MIMO 的空间分辨率与现有MIMO相比显著增强, 能深度挖掘空间维度资源, 使得网络中的多个用户可以在同一时频资源上利用大规模 MIMO 提供的空间自由度与基站同时进行通信, 从而在不需要增加基站密度和带宽的条件下大幅度提高频谱效率。第二, 大规模 MIMO 可将波束集中在很窄的范围内, 从而大幅度降低干扰。第三, 可大幅降低发射功率,从而提高功率效率. 第四, 当天线数量足够大时, 最简单的线性预编码和线性检测器趋于最优, 并且噪声和不相关干扰都可忽略不计。
(2) 基于滤波器组的多载波技术
由于在频谱效率、对抗多径衰落、低实现复杂度等方面的优势, OFDM (orthogonal frequency di-vision multiplexing)技术被广泛应用于各类无
线通信系统,如 WiMaX、LTE和LTE-A系统的下行链路,但 OFDM 技术也存在很多不足之处。比如, 需要插入循环前缀以对抗多径衰落,从而导致无线资源的浪费;对载波频偏的敏感性高, 具有较高的峰均比; 另外, 各子载波必须具有相同的带宽, 各子载波之间必须保持同步, 各子载波之间必须保持正交等, 限制了频谱使用的灵活性。此外,由于OFDM技术采用了方波作为基带波形,载波旁瓣较大,从而在各载波同步不能严格保证的情况下使得相邻载波之间的干扰比较严重。在 5G 系统中, 由于支撑高数据速率的需要, 将可能需要高达 1 GHz 的带宽。但在某些较低的频段, 难以获得连续的宽带频谱资源, 而在这些频段, 某些无线传输系统, 如电视系统中, 存在一些未被使用的频谱资源 (空白频谱). 但是, 这些空白频谱的位置可能是不连续的, 并且可用的带宽也不一定相同, 采用 OFDM 技术难以实现对这些可用频谱的使用。灵活有效地利用这些空白的频谱, 是 5G 系统设计的一个重要问题。
为了解决这些问题, 寻求其他多载波实现方案引起了研究人员的关注其中, 基于滤波器组的多载波 (FBMC, filter-bank based multicarrier) 实现方案是被认为是解决以上问题的有效手段, 被我国学者最早应用于国家 863 计划后 3G 试验系统中。滤波器组技术起源于 20 世纪 70 年代, 并在20世纪 80 年代开始受到关注, 现已广泛应用于图像处理、雷达信号处理、通信信号处理等诸多领域。在基于滤波器组的多载波技术中, 发送端通过合成滤波器组来实现多载波调制, 接收端通过分析滤波器组来实现多载波解调. 合成滤波器组和分析滤波器组由一组并行的成员滤波器构成, 其中各个成员滤波器都是由原型滤波器经载波调制而得到的调制滤波器与 OFDM 技术不同, FBMC 中, 由于原型滤波器的冲击响应和频率响应可以根据需要进行设计, 各载波之间不再必须是正交的, 不需要插入循环前缀;能实现各子载波带宽设置、各子载波之间的交叠程度的灵活控制, 从而可灵活控制相邻子载波之间的干扰, 并且便于使用一些零散的频谱资源;各子载波之间不需要同步, 同步、信道估计、检测等可在各资载波上单独进行处理, 因此尤其适合于难以实现各用户之间严格同步的上行链路。但另一方面, 由于各载波之间相互不正交, 子载波之间存在干扰;采用非矩形波形, 导致符号之间存在时域干扰, 需要通过采用一些技术来进行干扰的消除。
共分享92篇相关文档