当前位置:首页 > 材料力学性能 课后答案 (时海芳 任鑫)
循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。 19.
20题:两幅图都行
21.有板件在脉动载荷下工作,σmax=200MPa,σmin=0, 该材料的σb=670MPa,
σ0.2=600MPa, KIc=104MPa· m1/2, Paris公式中,C=6.9×10-12,n=3.0,使用中发现有 0.1mm和1mm两处横向穿透裂纹,请估算板件的疲劳剩余寿命?(2.69×105循环周次)解:只需要计算1mm裂纹就可以
第六章 金属的应力腐蚀和氢脆断裂
一、名词解释
1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。
2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。
3、腐蚀疲劳:当金属受到酸碱的腐蚀,一些部位的应力就比其他部位高得多,加速裂缝的形成,这叫“腐蚀疲劳”。
4、氢蚀:氢蚀指的是在高温高压环境下,氢进入金属内与一种组分或元素产生化学反应使金属破坏。
5、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。
6、氢化物致脆:对于ⅣB 或ⅤB 族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,是金属脆化,这种现象称氢化物致脆。
7、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。 二、说明下列力学性能指标的意义
1、ζscc:材料不发生应力腐蚀的临界应力。 2、KIscc:应力腐蚀临界应力场强度因子。 3、KI HEC:
4、da/dt:盈利腐蚀列纹扩展速率。
4.如何识别氢脆与应力腐蚀?
答:氢脆和应力腐蚀相比,其特点表现在:
1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。
3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。 4、氦脆断口上一般没有腐蚀产物或者其量极微。
5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。 5.为什么高强度材料容易产生应力腐蚀和氢脆?
氢脆和应力腐蚀的形成,都有一个必要条件,就是应力。从氢致断裂的形成机理来说,都是在外应力的作用下,渗入基材内的氢原子,在应力梯度作用下,向应力集中的位置偏聚集,形成微裂纹,当微裂纹继续扩展,原本具有韧性的材料就会发生脆性断裂。氢脆和应力腐蚀断裂的机理相同,只是氢的来源不同。
之所以是高强度的材料,一个重要的原因就是应为它们在工作中,需要承受较大的应力。 6.分析应力腐蚀裂纹扩展速率da/dt与K1关系曲线,并与疲劳裂纹扩展速率曲线进行比较
前者的第一和第三阶段的速率随K的变化非常快,后者相对较慢。第二阶段前者几乎是平行的,后者比较平稳但是速率还是会随着 k的变法而变化
8.何谓氢致延滞断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现?
答:高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。----氢致延滞断裂。
因为氢致延滞断裂的机理主要是氢固溶于金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错拉应力处,形成氢气团。
当应变速率较低而温度较高时,氢气团能跟得上位错运动,但滞后位错一定距离。因此,气团对位错起“钉扎”作用,产生局部硬化。当位错运动受阻,产生位错塞积,氢气团易于在塞积处聚集,产生应力集中,导致微裂纹。
若应变速率过高以及温度低的情况下,氢气团不能跟上位错运动,便不能产生“钉扎”作用,也不可能在位错塞积处聚集,产生应力集中,导致微裂纹。
所以氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现的。 试述区别高强度钢的应力腐蚀与氢致延滞断裂的方法
应力腐蚀断裂具有腐蚀产物和氧化现象,故常呈黑色和灰黑色。并且常有分叉现象,呈枯树枝状。氢致延滞断裂没有这些现象。
第七章 金属的磨损与耐磨性
1.名词解释
1、等强温度(TE):晶粒强度与晶界强度相等的温度。
2、约比温度:T/Tm,T为实验温度,Tm为金属熔点,都用热力学温度表示。 3、蠕变:在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。
4、蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。 该指标与常温下的屈服强度相似。
5、持久塑性:持久塑性是指材料在一定温度及恒定试验力作用下的塑性变形。用蠕变断裂后试样的延伸率和断面收缩率表示。
6、蠕变脆性:由于蠕变而导致材料塑性降低以及在蠕变过程中发生的低应力蠕变断裂的现象。
7、应力松弛:是在总应变保持不变时材料内部的应力随时间自行降低的现象。
8、松弛稳定性:P233 材料在恒变形的条件下,随着时间的延长,弹性应力逐渐降低的现象称为应力松弛。材料抵抗应力松弛的能力称为松弛稳定性。
9、过渡蠕变:应力不变的条件下,应变随时间延长而增加的现象。 (它与塑性变形不同,塑性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现。) 10、稳态蠕变:蠕变速率几乎保持不变的蠕变。 11、晶界滑动蠕变:
12、扩散蠕变:在高温条件下,晶体内空位将从受拉晶界向受压晶界迁移,原子则朝相反方 向流动,致使晶体逐渐产生伸长的蠕变。 2.说明下列力学性能指标的意义。 (1)P229 (2)P229 (3)P231
3、和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在?
答案:1、首先,材料在高温将发生蠕变现象。材料在高温下不仅强度降低,而且塑性也降 低。应变速率越低,载荷作用时间越长,塑性降低得越显著。 2、高温应力松弛。
3、产生疲劳损伤,使高温疲劳强度下降。
4.试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同?
答:常温下金属塑性变形主要是通过位错滑移和孪晶进行的,以位错滑移为主要机制。当滑移面上的位错运动受阻产生塞积时,必须在更大的切应力作用下才能使位错重新运动和增值,宏观变现为加工硬化现象,或对于螺型位错,采用交滑移改变滑移面来实现位错继续运动。而当高温下金属蠕变变形主要通过位错滑移,原子扩散等机理进行。1,当滑移面上的位错运动受阻产生塞积时,位错可借助于外界提供的热激活能和空位扩散来克服短程阻碍。主要是通过刃型位错的攀移来实现。2,此外,在高温下大量原子和空位定向移动,即在两端拉应力作用下,晶体内空位将从受拉晶界向受压晶界迁移,原子则朝相反方向流动致使晶
共分享92篇相关文档