云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020-2021部编本高中数学 第一章 集合与函数的概念检测试题 新人教A版必修1

2020-2021部编本高中数学 第一章 集合与函数的概念检测试题 新人教A版必修1

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 22:55:40

最新人教版小学试题 即f(x-1)-f(x)=f(-1)+=-1<0, 因此f(x-1)

令y=-x,代入可得f(0)=f(x)+f(-x)+,

即f(x)++f(-x)+=0,因此f(x)+为奇函数,④对;因为f(x)+1=f(x)+

+,由④可知g(x)=f(x)+为奇函数,g(x)+-g(-x)-=2g(x)不恒为0,故⑤错. 答案:①②④

三、解答题(共40分) 17.(本小题满分8分)

2

已知函数f(x)=x+ax+b的图象关于直线x=1对称. (1)求实数a的值;

(2)若f(x)的图象过(2,0)点,求x∈[0,3]时,f(x)的值域.

解:(1)二次函数f(x)=x+ax+b的对称轴为x=-,所以-=1,所以a=-2. (2)若f(x)过(2,0)点,所以f(2)=0.

22

所以2-2×2+b=0,所以b=0,所以f(x)=x-2x.

当x=1时f(x)最小为f(1)=-1,当x=3时,f(x)最大为f(3)=3, 所以f(x)在[0,3]上的值域为[-1,3]. 18.(本小题满分10分)

2

已知函数f(x)=x-2|x|-1,-3≤x≤3. (1)证明:f(x)是偶函数; (2)求函数f(x)的单调区间; (3)求函数的值域.

(1)证明:因为-3≤x≤3,所以定义域关于原点对称.

2

因为f(-x)=(-x)-2|-x|-1=f(x), 所以f(x)为偶函数. (2)解:f(x)=

函数f(x)的图象如图所示.

2

f(x)的单调增区间为[-1,0],[1,3];单调减区间为[-3,-1],[0,1].

(3)当x=±3时,f(x)max=2,当x=±1时,f(x)min=-2,故f(x)的值域为[-2,2].

部编本试题,欢迎下载! 最新人教版小学试题 19.(本小题满分10分)

2

已知函数f(x)=mx+nx+3m+n是偶函数,且其定义域为[m-1,2m]. (1)求m,n的值.

(2)求函数f(x)在其定义域上的最大值.

2

解:(1)因为函数f(x)=mx+nx+3m+n是偶函数, 所以函数的定义域关于原点对称.

又因为函数f(x)的定义域为[m-1,2m]. 所以m-1+2m=0,

解得m=.

又因为函数f(x)是偶函数,

22

所以f(-x)=mx-nx+3m+n=f(x)=mx+nx+3m+n, 解得n=0.

(2)由(1)得函数的解析式为f(x)=x+1,

2

定义域为[-,],

其图象是开口向上,且以y轴为对称轴的抛物线,

所以当x=±时,f(x)取最大值.

20.(本小题满分12分)

2

已知函数f(x)=ax+bx+c(a≠0),满足f(0)=2,f(x+1)-f(x)=2x-1. (1)求函数f(x)的解析式; (2)求函数f(x)的单调区间;

(3)当x∈[-1,2]时,求函数的最大值和最小值. 解:(1)由f(0)=2,得c=2, 又f(x+1)-f(x)=2x-1, 得2ax+a+b=2x-1, 故

2

解得a=1,b=-2.

所以f(x)=x-2x+2.

22

(2)f(x)=x-2x+2=(x-1)+1,函数图象的对称轴为x=1,且开口向上, 所以f(x)单调递增区间为(1,+∞), 单调递减区间为(-∞,1).

22

(3)f(x)=x-2x+2=(x-1)+1, 对称轴为x=1∈[-1,2], 故f(x)min=f(1)=1,

又f(-1)=5,f(2)=2,所以f(x)max=f(-1)=5.

部编本试题,欢迎下载!

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

最新人教版小学试题 即f(x-1)-f(x)=f(-1)+=-1<0, 因此f(x-1)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com