云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版七年级数学上册全册教案

北师大版七年级数学上册全册教案

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 18:35:04

教学方法:三疑三探教学 教学过程

一、设疑自探

1、复习引入

在小学我们已经学习过a·a,记作a,读作a的平方(或a的二次方);a·a·a记作a,读作a的立方(或a的三次方);那么,a·a·a·a

(n是正整数)呢?

在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.

2、设疑

①.求n个相同因数的积的运算叫做乘方.

②.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数. 一般地,在a中,a取任意有理数,n取正整数.

应当注意,乘方是一种运算,幂是乘方运算的结果.当a看作a的n次方的结果时,也可以读作a的n次幂. ③.我们知道,乘方和加、减、乘、除一样,也是一种运算,a就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.

n

n

n

2

3

二.解疑合探

例1 计算:

教师指出:2就是2,指数1通常不写.让三个学生在黑板上计算.

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)横向观察:正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零. (2)纵向观察:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等. (3)任何一个数的偶次幂是什么数? 任何一个数的偶次幂都是非负数. 你能把上述的结论用数学符号语言表示吗? 当a>0时,a>0(n是正整数); 当a=0时,a=0(n是正整数). (以上为有理数乘方运算的符号法则) a=(-a)(n是正整数); a

2n-12n2n

2n

nn

1

=-(-a)

2n-1

(n是正整数);

a≥0(a是有理数,n是正整数).

三.质疑再探:

例2 计算:(1)(-3),(-3),[-(-3)];(2)-3,-3,-(-3);

让三个学生在黑板上计算.

教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)的底数是-a,表示n个(-a)相乘,-a是a的相反数,这是(-a)与-a的区别.

教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.

n

n

n

n

n

2

3

5

2

3

5

四.运用拓展:

课堂练习 计算: (2)(-1)小结

让学生回忆,做出小结:

1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.

33

2001n

,3×2,-4×(-4),-2÷(-2);

22233

(3)(-1)-1.

作业:P74 1、2、3

练习设计

3.当a=-3,b=-5,c=4时,求下列各代数式的值: (1)(a+b); (2)a-b+c; (3)(-a+b-c); (4)a+2ab+b.

4.当a是负数时,判断下列各式是否成立. (1)a=(-a); (2)a=(-a);

5.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么? 6.若(a+1)+|b-2|=0,求a板书设计

§2.10有理数的乘方(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计

七、教学后记

*

2

2000

*

2

2

3

3

2

2

2

2

2

2

2

·b的值.

3

§2.10有理数的乘方(2)

教学目标

使学生了解科学记数法的意义,并会用科学记数法表示比较大的数. 教学重点和难点

重点:正确运用科学记数法表示较大的数. 难点:正确掌握10的幂指数特征. 教学方法:启发式教学 教学过程

一、复习1.什么叫乘方?说出10,-10,(-10)的底数、指数、幂. 2.计算:(口答)

3.把下列各式写成幂的形式:

4.计算:10,10,10,10,10,10,10. 二、导入新课 由第4题计算 10=100000, 10=1000000, 10=10000000000,

左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等.但是像太阳的半径大约是696 000千米,光速大约是300 000 000米/秒,中国人口大约 13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法.

三、新课讲解 1.10的特征 观察第4题 10=10, 10=100,

34

21

n1065

1

2

3

4

5

6

10

3

3

3

10=1000, 10=10000, 10=10000000000.

提问:10中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系? 2.科学记数法

(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式.如: 100=1×100=1×10, 6000=6×1000=6×10, 7500=7.5×1000=7.5×10.

第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1000,变成10的n次幂的形式就行了.

(2)科学记数法定义

根据上面例子,我们把大于10的数记成a×10的形式,其中a是整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.

用字母N表示数,则N=a×10(1≤|a|<10,n是整数),这就是科学记数法. 例 用科学记数法表示下列各数:

(1)1 000 000; (2) 57 000 000; (3) 696 000;

(4) 300 000 000; (5)-78 000; (6) 12 000 000 000. 解:(1) 1000 000=10;

(2) 57 000 000=5.7×10 000 000=5.7×10; (3) 696 000=6.96×100 000=6.9×10; (4) 300 000 000=3×100 000 000=3×10; (5)-78 000=-7.8×10 000=-7.8×10;

(6)12 000 000 000=1.2×10 000 000 000=1.2×10. 四、课堂练习

1.用科学记数法记出下列各数; 8000000;5600000;740000000.

2.下列用科学记数法记出的数,原来各是什么数? 1×10;4×10;8.5×10;7.04×10;3.96×10. 五、小结

1.指导学生看书.

2.强调什么是科学记数法,以及为什么学习科学记数法.

3.突出科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.

7

3

6

5

4

10

4

85

7

6

n

n

3

32

n

104

3

六、作业:P76 1、2 七、板书设计

§2.10有理数的乘方(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5 (二)观察发现 (四)课堂练习

八、教学后记

35

§2.11有理数的混合运算(1)

教学目标

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算; 3.注意培养学生的运算能力. 教学重点和难点

重点:有理数的混合运算.

难点:准确地掌握有理数的运算顺序和运算中的符号问题. 教学方法:启发式教学教学 教学过程

一、设疑自探

1、复习引入

①.计算(五分钟练习):

(5)-25; (6)(-2);(7)-7+3-6; (8)(-3)×(-8)×25; (13)(-616)÷(-28); (14)-100-27; (15)(-1); (16)0; (17)(-2); (18)(-4); (19)-3; (20)-2; (24)3.4×10÷(-5).

②.说一说我们学过的有理数的运算律: 加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:a(b+c)=ab+ac. 2、设疑

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行. 审题:(1)运算顺序如何? (2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

审题:运算顺序如何确定? 注意结果中的负号不能丢.

计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.

44

2

2

3101

21

2

3

二.解疑合探

例3 计算:(1)(-3)×(-5); (2)[(-3)×(-5)];(3)(-3)-(-6); (4)(-4×3)-(-4×3). 审题:运算顺序如何?

解:(1)(-3)×(-5)=(-3)×25=-75. (2)[(-3)×(-5)]=(15)=225. (3)(-3)-(-6)=9-(-6)=9+6=15.

36

2

2

2

2

2

2

2

2

2

搜索更多关于: 北师大版七年级数学上册全册教案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

教学方法:三疑三探教学 教学过程 一、设疑自探 1、复习引入 在小学我们已经学习过a·a,记作a,读作a的平方(或a的二次方);a·a·a记作a,读作a的立方(或a的三次方);那么,a·a·a·a (n是正整数)呢? 在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明. 2、设疑 ①.求n个相同因数的积的运算叫做乘方. ②.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数. 一般地,在a中,a取任意有理数,n取正整数. 应当注意,乘方是一种运算,幂是乘方运算的结果.当a看作a的n次方的结果时,也可以读作a的n次幂. ③.我们知道,乘方和加、减、乘、除一样,也是一种运算,a就是表示n个a相乘,所以可以利用

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com