当前位置:首页 > 北师大版七年级数学上册全册教案
一、设疑自探
1、梳理本章知识
经过一章的学习,同学们体会到我们就生活在一个丰富的图形世界中,现实物体以图形的形式呈现在我们面前,我们通过图片这个窗口认识了我们生存的现实空间.下面我们乘坐一列“问题”快车一同来回顾本章的知识,反思所学.
(一)生活中有哪些你熟悉的图形?举例说明.
(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体. (三)用自己的语言说一说棱柱的特征?(直棱柱) 展示六棱柱模型,学生观察交流回答棱柱有以下特征: ①棱柱上有上下两个底面,它们形状大小相同; ②棱柱的侧面都是长方形; ③侧棱的长度都相等;
④侧面的个数与底面多边形边数相同.
二、解疑合探
A、利用棱柱的特征我们可以解决哪些问题?
B、能根据下列给出的正方体平面展开图指出正方体中相对的面吗?(可用相同的字母表示),发现了什么规律?
给出若干个具有代表性的正方体平面展开图,如图
让学生先想,再动手折叠,填空,分组讨论寻找规律.
学生代表回答:正方体相对的两个面在其平面展开图中有两种位置关系. ①两个正方形在同一行或同一列且彼此相隔一个正方形; ②两个正方形既不在同一行也不在同一列,其中一个图内部沿如右图路径平移能与另一个正方形重合.
指出:事实上我们可以根据正方体相对的两个面在其平面展开图中的位置关系判别哪些平面展开图可以折叠成正方体.
(四)找出两种几何体,使得分别用一个平面去截它们,可以得到三角形的截面. 以正方体为例:
A、截下的几何体与剩余几何体分别是什么立体图形?
B、每个几何体的顶点数(v),面数(f),棱数(e)分别有什么关系?(f+v–e=2) (五)举出一种几何体,使得它的主视图,左视图和俯视图都一样,你能举出几种?与同伴进行交流.
B A B
C
A C
正方形在展开
9 主视图 左视图 俯视图 教师引导:
三视图相同,立体物体的形状是否唯一确定? 先让学生分组讨论,教师画出如下三视图:
反思:三视图可以尽可能将立体物体的位置展现完整,但有时仅有三视图也不以能完全确定立体物体的形状.
三、质疑再探
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题) 四、运用拓展
1、学生编题----学生答题;教师编题----学生答题 2、作业:
1、将一个正三棱柱沿棱剪开,你可以得到哪些平面展开图?
2、根据下列三视图建造的建筑物是什么样子?共有几层?一共需要多少个小立方体?
俯视图
主视图
左视图
10
§2.1数怎么不够用了(1)
教学目标
1.使学生了解正数与负数是从实际需要中产生的;
2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数; 3.初步会用正负数表示具有相反意义的量;
4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力. 教学重点:负数的意义. 教学难点:负数的意义 教学方法:三疑三探教学 教学过程
一、设疑自探
1、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?
小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,…… 4.87、…… 为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示. 什么叫做正数?什么叫做负数? 2、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
和“运出”,其意义是相反的. 同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢? 待学生思考后,请学生回答、评议、补充.
只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了. 让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.
二.解疑合探
例 所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.
三.质疑再探
11
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ …}, 负数集合:{ …}. 练习设计
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数? -3.6,-4,9651,-0.1.
4.如果-50元表示支出50元,那么+200元表示什么?
5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么? 7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么? 小结
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.
作业:P35 1、3 板书设计
2.1数怎么不够用了(1) (一)知识回顾 (四)例题解析 (六)课堂小结 (二)观察发现 (三)解方程 (五)课堂练习 练习设计
教学后记
§2.1数怎么不够用了(2)
教学目标
1.使学生理解有理数的意义,并能将给出的有理数进行分类; 2.培养学生树立分类讨论的思想.
教学重点:有理数包括哪些数.
教学难点:有理数的分类及其分类的标准. 教学方法:三疑三探教学 教学过程
一、设疑自探 1、复习引入 2.学生设疑
①.什么是正、负数?
②.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明. ③.任何一个正数都比0大吗?任何一个负数都比0小吗? 4.什么是整数?什么是分数? 根据学生的回答引出新课.
12
共分享92篇相关文档