µ±Ç°Î»ÖãºÊ×Ò³ > 2017Öп¼ÊýѧһÂÖ¸´Ï°½Ì°¸ÍêÕû°æ
£ª(5).x£«4y £ª(6).a£«2ab£«b£2a£2b£«1
12£®ÊµÊý·¶Î§ÄÚÒòʽ·Ö½â
2222
£¨1£©£ø£2£ø£4 £¨2£©4£ø£«8£ø£1 £¨3£©2£ø£«4£ø£ù£«£ù
17
4422
µÚ5¿Î ·Öʽ
֪ʶµã:
·Öʽ£¬·ÖʽµÄ»ù±¾ÐÔÖÊ£¬×î¼ò·Öʽ£¬·ÖʽµÄÔËË㣬ÁãÖ¸Êý£¬¸ºÕûÊý£¬ÕûÊý£¬ÕûÊýÖ¸ÊýÃݵÄÔËËã ´ó¸ÙÒªÇó:
Á˽â·ÖʽµÄ¸ÅÄ»áÈ·¶¨Ê¹·ÖʽÓÐÒâÒåµÄ·ÖʽÖÐ×ÖĸµÄȡֵ·¶Î§¡£ÕÆÎÕ·ÖʽµÄ»ù±¾ÐÔÖÊ£¬»áÔ¼·Ö£¬Í¨·Ö¡£»á½øÐмòµ¥µÄ·ÖʽµÄ¼Ó¼õ³Ë³ý³Ë·½µÄÔËËã¡£ÕÆÎÕÖ¸ÊýÖ¸ÊýÃݵÄÔËËã¡£ ¿¼²éÖØµãÓë³£¼ûÌâÐÍ:
1£®¿¼²éÕûÊýÖ¸ÊýÃݵÄÔËË㣬ÁãÔËË㣬ÓйØÏ°Ìâ¾³£³öÏÖÔÚÑ¡ÔñÌâÖУ¬È磺ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨ £©
10 -1m-n2m-n -1-1-1
£¨A£©-4=1 (B) (-2)= (C) (-3)=9(D)(a+b)=a+b
2
2.¿¼²é·ÖʽµÄ»¯¼òÇóÖµ¡£ÔÚÖп¼ÌâÖУ¬¾³£³öÏÖ·ÖʽµÄ¼ÆËã¾Í»ò»¯¼òÇóÖµ£¬ÓйØÏ°Ìâ¶àΪÖеµµÄ½â´ðÌâ¡£×¢Òâ½â´ðÓйØÏ°Ìâʱ£¬Òª°´ÕÕÊÔÌâµÄÒªÇó£¬ÏÈ»¯¼òºóÇóÖµ£¬»¯¼òÒªÈÏÕæ×Ðϸ£¬È磺
»¯¼ò²¢ÇóÖµ£º
xx-y2x+2¡ã
¨C2),ÆäÖÐx=cos30¡ã,y=sin902 . 22 +((x-y)x+xy+yx-y֪ʶҪµã
1£®·ÖʽµÄÓйظÅÄî
ÉèA¡¢B±íʾÁ½¸öÕûʽ£®Èç¹ûBÖк¬ÓÐ×Öĸ£¬Ê½×Ó
3
3
A¾Í½Ð×ö·Öʽ£®×¢Òâ·ÖĸBµÄÖµ²»ÄÜBΪÁ㣬·ñÔò·ÖʽûÓÐÒâÒå
·Ö×ÓÓë·ÖĸûÓй«ÒòʽµÄ·Öʽ½Ð×ö×î¼ò·Öʽ£®Èç¹û·Ö×Ó·ÖĸÓй«Òòʽ£¬Òª½øÐÐÔ¼·Ö»¯¼ò 2¡¢·ÖʽµÄ»ù±¾ÐÔÖÊ
AA?MAA?M?, ?£¨MΪ²»µÈÓÚÁãµÄÕûʽ£© BB?MBB?M3£®·ÖʽµÄÔËËã
(·ÖʽµÄÔËËã·¨ÔòÓë·ÖÊýµÄÔËËã·¨ÔòÀàËÆ)£®
acacn??;aaacad?bcn ?? (Òì·ÖĸÏà¼Ó£¬ÏÈͨ·Ö)£»bdbd ()?n.
bdbdbbacadad????;bdbcbc4£®ÁãÖ¸Êý a?1(a?0) 5£®¸ºÕûÊýÖ¸Êý a?p0?1(a?0,pΪÕýÕûÊý). paam?an?am?n,×¢ÒâÕýÕûÊýÃݵÄÔËËãÐÔÖÊ am?an?am?n(a?0),
(am)n?amn,(ab)n?anbn¿ÉÒÔÍÆ¹ãµ½ÕûÊýÖ¸ÊýÃÝ£¬Ò²¾ÍÊÇÉÏÊöµÈʽÖеÄm¡¢ n¿ÉÒÔÊÇO»ò¸ºÕûÊý£®
¿¼²éÌâÐÍ:
18
1£® ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨ £©
10 -1m-n2m-n -1-1-1
£¨A£©£4=1 (B) (£2)= (C) (£3)=9(D)(a+b)=a+b
22£®»¯¼ò²¢ÇóÖµ£º
xx-y2x+2¡ã
. +( ¨C2),ÆäÖÐx=cos30¡ã,y=sin90 222
(x-y)x+xy+yx-y
£áx-4x-£ù1£ð33£á£â£ã3£® ¡¢ ¡¢ ¡¢ ¡¢ ¡¢ £á£«£â¡¢ ÖзÖʽÓУߣߣß
3x2£á§£«125|x|-14£®µ±x=-----------ʱ£¬ ·Öʽ µÄֵΪÁ㣻
(x-3)(x+1)x-1
5£®µ±xÈ¡---------------ֵʱ£¬·Öʽ2 ÓÐÒâÒ壻
x+2x-3
4AB
6£®ÒÑÖª2 £½ £« ÊǺãµÈʽ£¬ÔòA£½£ß£ß£ß£¬B£½£ß£ß£ß¡£
x£1x£1x£«1x+2x-1x-4
7£®»¯¼ò(2 ¨C 2 )¡Â x-2xx-4x+4x
x-3x-2x-311
8£®ÏÈ»¯¼òºóÔÙÇóÖµ£º2 ¡Â2 + ,ÆäÖÐx=
x-1x+2x+1x+1 2 -1
£á£á£4£á£â£5£á£â
9£®ÒÑÖª £½2£¬Çó322 µÄÖµ
£á££â£á£6£á£â£«5£á£â
¿¼µãѵÁ·£º
-3
1£¬·Öʽ µ±x=----------- ʱÓÐÒâÒ壬µ±x=-----------ʱֵΪÕý¡£
x-21
2£¬·Öʽ ÖеÄȡֵ·¶Î§ÊÇ£¨ £©
11-2 1-x
£¨A£©x¡Ù1 £¨B£©x¡Ù-1 £¨C£©x¡Ù0 £¨D£©x¡Ù¡À1ÇÒx¡Ù0 3£¬µ±x=-------------------ʱ£¬·Öʽ4£¬»¯¼ò
12a+7a+10a+1a+1
£¨1£©1£ +2 (2) 2 ? 2 ¡Â
x+11-xa-a+1a+4a+4a+2
12-a-a
(3) [a+(a- )? 2 ]¡Â(a-2)(a+1)
1-aa-a+1
a+b
(4)¡£ÒÑÖªb(b£1)£a(2b£a)=£b+6£¬Çó ¨CabµÄÖµ
2444
£ª(5).[(1+ )(x£4+ )¨C3]¡Â ( ¨C1)
x-2xx
2
2
2
2
3
3
2
2
2
2
2
3
3
3
|x|-3
µÄֵΪÁ㣿
x+4x+12
2
19
12x
£ª(6). ÒÑÖªx+ =5 £¬Çó 42 µÄÖµ
xx-x+1 £ª£¨7£©Èô£á£«£â£½1£¬ÇóÖ¤£º
½âÌâÖ¸µ¼,
a-1
1£®µ±a=----- -ʱ,·Öʽ2 ÎÞÒâÒå,µ±a-=----- -ʱ,Õâ¸ö·ÖʽµÄֵΪÁã.
a-2a-32£®Ð´³öÏÂÁи÷ʽÖÐδ֪µÄ·Ö×Ó»ò·Öĸ,
x-y(y-x)-2x( )(1) = (2) = 25y( )1-2x2x-x
4
b+23
3£®²»¸Ä±ä·ÖʽµÄÖµ,°Ñ·Öʽ µÄ·Ö×Ó,·Öĸ¸÷ÏîµÄϵÊý»¯ÎªÕûÊý,ÇÒ×î¸ß´ÎÏîµÄϵÊý¾ù
12 -2b2£á£1
ΪÕýÕûÊý,µÃ-------------------------£¬·Öʽ Ô¼·ÖµÄ½á¹ûΪ£ß£ß£ß£ß¡£ 2
££á££á£«23x
4£®°Ñ·Öʽ ÖеÄx,y¶¼À©´óÁ½±¶,ÄÇô·ÖʽµÄÖµ( )
x+y(A)À©´óÁ½±¶ (B) ²»±ä (C) ËõС (D) ËõСÁ½±¶ 15x-12
5£®·Öʽ£2 , , µÄ×î¼ò¹«·ÖĸΪ( )
2x4(m-n)n-m
12222
(A) 4(m£n)(n£m)x (B)2 (C)4x(m£n) (D)4(m£n)x
4x(m-n)6£®ÏÂÁи÷ʽµÄ±äºÅÖÐ,ÕýÈ·µÄÊÇ
x-yy-xx-yy-x-x-1x-1-x-yx+y (A) = £ ( B)2 =2 (C) = (D) £½£ y-xx-yy-xy-x-y+1y+1y-xy-xx+1y
7£®Èôx >y>0,Ôò £ µÄ½á¹ûÊÇ( )
y+1x
(A) 0 (B)ÕýÊý (C) ¸ºÊý (D) ÒÔÉÏÇé¿ö¶¼ÓпÉÄÜ
8£®»¯¼òÏÂÁи÷ʽ:
1a+16x+2xy+yx+y2
(1) + £ 2 (2) (xy+y)¡Â ¡¤2
a-36+2aa-9xyy
12a-a+11£ª(3) [1£(a£ )¡Â 2 ]¡¤ 1-aa-2a+11-a
a1
(4) Èô(2 ¨C1)a=1£¬Çó £ +1µÄÖµ
11+a1+ a
2
2
2
2
2
2
2
£á£â2£¨£â££á£©
£ £½ 3322
£â£1£á£1£á£â£«3
20
¹²·ÖÏí92ƪÏà¹ØÎĵµ